

TITAN SONDAJ

MADENCILİK ENERJİ SAN. VE TİC. LTD. ŞTİ.

About US

TITAN drilling has been established as a company that provides solutions in the field of services and consulting to all companies in the sector with the aim of carrying out ground survey and decal exploration drilling activities in all Turkey and internationally.

Our company continues its activities with the aim of providing world-class (JORC, NI - 43-101) services in national and international areas by following the technological developments of our time and constantly renewing itself.

TITAN drilling aims to provide the best service to

About US

its customers in international quality standards in order to produce the most reliable and economical solutions together with the principle of continuously increasing professional competence and increasing professional prestige to the highest levels with its modern machinery and equipment and experienced technical and engineering staff.

LAGNOS NATIT

Our Services

Drilling Services

- * Metallic Mine Drilling
- * Energy Drilling
- * Precious Element Drilling
- * Water Drilling-Rotary
- * Air drilling-RC
- * Geotechnical Drilling

LAGNOS NATIT

Infrastructure Services

* Pipejacking And Pipeline İnstallation (Horizontal & Vertical)

LAGNOS NATIT

Construction Services

- *Construction Management
- *Construction Reporting
- * Construction Build
- * Construction Design

Reporting Services

- * Reporting in UMREK approved, NI-43-101 and JORC standards
- * Exploration of mineral deposits and reserve account
- * Geographic Information Systems (GIS) applications
- * Geological-Geotechnical Studies Based On Zoning Planning
- * Geothermal field exploration and production projects and drilling decks
- * Groundwater exploration and decommissioning and drilling

- * Road and railway projects
- * Urban Transformation Projects
- * Energy Projects
- * Hydrogeological Studies
- * Preparation of Environmental Impact

Assessment (EIA) reports

* Consulting Services

*GROUND WORKS SERVICES

Mine Drilling

Rotary Drilling

Rotary-muddy drilling method is applied on floors consisting of such materials because clay, sand, gravel type materials called loose and floors can spill and collapse during drilling. In order to eliminate the drawbacks of water circulation (circulation) in distorted formations, the mud formed by the addition of various additives to provide a density and viscosity greater than water, as well as gel strength, is called "drilling mud".

It is necessary that these additives can remain in suspension in water for a long time. To ensure this, substances in clay and bentonite are used.

Some other substances can also be added to affect density and viscosity.

By turning a cutter and grinder drill, the broken parts in the ground are thrown out by drilling mud and the ground is drilled by moving through the gap.

The water or drilling mud sucked out of the pool by means of the machine's pump, which transmits the rotational movement

it receives from the engine to the drill and is called a drilling tool (drilling tool), passes through the pipes and rises from the gap between the drilling tool and the well wall and rises to the decking.

MINE DRILLING

Reverse Circulation (RC) Drilling

In cases where there are too many crevices and cracks in hard and rock formations, drilling

circulation mud escapes from these cracks and normal circulation is not provided. In such cases, pressure air drilling is used, since Muddy drilling will not be economical. In RC drilling, the formation that will be drilled will not be suitable for destruction, the formation will not contain sticky substances such as clay, and the amount of moisture or water in the formation will not prevent cuts from being thrown out.

TITAN SONDAJ

In RC drilling, compressed air is used instead of drilling fluid. Designed to use mud and air, RC

water drill rigs are useful for limestone formations that are moisture-free, dry or too cracked to provide circulation. Juliette water drill rigs are designed to use mud and air.

In other words, it is a rotary drilling method in which the cleaning process is done with air. In the RC drilling method, the mud pump is replaced by a compressor.

LAGNOS NATIT

TITAN SONDAJ

Mine Drilling Wire

Line Core Drilling

In this technique, it is not necessary to remove the Tijs from the well in order to remove the core obtained as a result of the drilling process from the well. In this technique, after the inner tube is filled with core, the equipment, which is connected to a thin steel rope and called over shot(fishing line), is lowered into the well. Over

shot captures the part located at the top of the inner tube head. When the rope is pulled out of the well, the switches close, which ensure that

the inner tube is stable inside the outer tube and does not escape backwards, and the inner tube is released. In this way, the inner tube is separated from the outer tube and removed to the head of the well.

Advantages of wire Line ucore drilling technique

- 1. Time and labor savings
- 2. Increased drilling depth
- 3. Decline of well ruins
- 4. Increase diamond drill life
- 5. Increase in amount of core feed
- 6. Increase in the percentage of coring

LAGNOS NATIT

Infrastructure Services

Pipejacking And Pipeline İnstallation (Horizontal & Vertical)

Pipe jacking, generally referred to in the smaller diameters as microtunnelling, is a technique for installing underground pipelines, ducts and culverts. Powerful hydraulic jacks are used to push specially designed pipes through the ground behind a shield at the same time as excavation is taking place within the shield. The method provides a flexible, structural, watertight, finished pipeline as the tunnel is excavated by Titan drilling

There is no theoretical limit to the length of individual pipe jacks although practical engineering considerations and economics may impose restrictions. Drives of several hundred metres either in a straight line or to a radius or a series of radii are readily achievable. A range of mechanical and remote control excavation systems are available. Pipes in the range 150mm to 3000mm, can be installed by employing the appropriate system. Construction tolerances are comparable with other tunnelling methods, and the pipe jacking method generally requires less overbreak than alternative systems. It provides ground support and reduces potential ground movement. Mechanical excavation methods are similar to those employed in other forms of tunnelling. Shields, excavation and face support can be provided for a wide variety of ground conditions by Titan drilling

In order to install a pipeline using this technique, thrust and reception pits are constructed, usually at manhole positions. The dimensions and construction of a thrust

pit vary according to the specific requirements of any drive with economics being a key factor. Pit sizes will vary according to the excavation methods employed, although these can be reduced if required by special circumstances by Titan drilling

A thrust wall is constructed to provide a reaction against which to jack. In poor ground, piling or other special arrangements may have to be employed to increase the reaction capability of the thrust wall. Where there is insufficient depth to construct a normal thrust wall, for example through embankments, the jacking reaction has to be resisted by means of a structural framework having adequate restraint provided by means of piles, ground anchors or other such methods for transferring horizontal loads by Titan drilling

To ensure that the jacking forces are distributed around the circumference of a pipe being jacked, a thrust ring is used to transfer the loads. The jacks are interconnected hydraulically to ensure that the thrust from each is the same. The number of jacks used may vary because of the pipe size, the strength of the jacking pipes, the length to be installed and the anticipated frictional resistance by Titan Drilling

A reception pit of sufficient size for removal of the jacking shield is normally required at the completed end of each drive. The initial alignment of the pipe jack is obtained by accurately positioning guide rails within the thrust pit on which the pipes are laid. To maintain accuracy of alignment during pipe jacking, it is necessary to use a steerable shield, which must be frequently checked for line and level from a fixed reference. For short or simple pipe jacks, these checks can be carried out using traditional surveying equipment. Rapid excavation and remote control techniques require sophisticated electronic guidance systems using a combination of lasers and screen based computer techniques by Titan drilling

When the pipejack or microtunnel is carried out below the water table it is usual to incorporate a headwall and seal assembly within each thrust and reception pit. The use of these items prevents ingress of ground water and associated ground loss, and retains annular lubricants. The pipe jacking technique and its components have been subject to extensive and ongoing research at a number of leading UK universities including both Oxford and Cambridge. This has included model and full scale testing of pipes and joints and the effects of lubrication and soil conditioning on the pipe jacking process by Titan drilling

This activity has been undertaken under the auspices of the Pipe Jacking Association with funding and participation provided through government research bodies, water companies and the tunnelling and pipe jacking industry by Titan drilling

LAGNOS NATIT

Our expertise includes but nor limited to design, construction, inspection and testing, commissioning, maintenance, in-service inspections, repairs and alterations of;

- Pipelines
- Piping
- Aboveground Storage Tanks
- Boilers and Pressure Vessels
- Separators, Heat Exchangers, Distillation Columns, Drums
- Cooling Towers, Condensers, Chemical Reactors, Process Vessels
- Process Control & Instrumentation Systems
- Drilling and Drill Sets
- -Steel Structures

Our capabilities include but not limited to:

- Sourcing and Supply
- Supplier Selection and Management
- -Project Management
- Construction Management
- -Quality & HSE Management
- Risk Assessment and Management
- Maintenance Management
- -Mechanical Integrity and Process Safety
- Inspection and Testing Services
- -Calibration Services

LADNO2 NATIT

LADNO2 NATIT

Pipe Jacking Referencess

- *BOTAŞ 22 km -80 Inch -2021-Petroleum
- *DSİ 24 km -80 Inch -2020-Water
- * TPO 22 km -60 Inch -2019-Petroleum
- * Kolin Construction-21 km -80 Inch- 2018-Water
- *BP -30 km -80 Inch -2017-Petroleum
- *SHELL -25 km -60 Inch -2016-Petroleum
- * DSİ -22 km 80 Inch (10 km)-60 Inch (10 km)-Water -2015
- * DSİ 24 km 60 Inch -2014-Water
- * Limak Construction -21 km-40 Inch -2013-Water
- *Kalyon Construction -22 km -60 Inch 2012-Water

PIPELINE CONSTRUCTION & MANAGEMENT

- 1. Kirklareli Çorlu Natural Gas Pipeline, Turkey 36"-98 Km
- 2. Mersin Natural Gas Distribution Lines, Turkey 4"-8"-12"-"16" 35 Km
- 3. Hatay Natural Gas Pipeline, Turkey 36" -21 Km
- 4. Kahta Natural Gas Pipeline, Turkey 8"-41 Km
- 5. Antalya Oil Lines, Turkey 8"-32 Km
- 6. Çorlu-Keşan Natural Gas Pipeline, Turkey 36"- 120 Km
- 7. Zubair Field Development Project, 4" Flowlines, Iraq

PIPELINE AND ENERGY GENERATION SERVICES

- 1. Testing of Safety Relief Valves, Atwood Southern Cross Offshore Drilling Rig, 2007
- 2. Rapid Engineering & Construction Ltd. Telavi-Akhmeta Gas Pipeline, Georgia:
 Consultancy, Management and Supervision
 Services for Air Drying of 12" 27km
 pipeline
- 3. Electro Montage Service Ltd. Tsiteli Hidi Marneuli Gas Pipeline, Georgia: Consultancy, Management and Supervision Services for Air Drying of 20" 24km pipeline
- 4. Kurdistan Oil Export Pipeline, KRG, Iraq: Hottapping, Cold Pipe Cutting and Welding Services for the Installation of a 40" Ball Valve

- 5. Sakhmilsadenmsheni Ltd. East West Gas Pipeline Rehabilitation Project (Phase III) KUTAISI ABASHA Section I & II, Georgia: Consultancy, Management and Supervision Services for Air Drying of 28"-47km Gas Pipeline
- 6. Sakhmilsadenmsheni Ltd. Rehabilitation of 23km Section of Zestafoni Kutaisi Pipeline, Georgia: Consultancy, Management and Supervision Services for Air Drying of 28"- 23km Gas Pipeline
- 7. Hyundai Engineering Corp. Taza Power Plant, Kirkuk, Iraq: Hydrostatic Testing, Cleaning and Drying of 470m 10 " Fuel Line
- 8. Hyundai Engineering Corp. Qudus-3 Power Plant, Baghdad, Iraq: Cleaning and Air Blowing of 540m + 470m 2 x 10" Fuel Lines

- 9. KAR Construction Co. KRG, Iraq: Supervision for special crossings of 24" and 36" Gas Pipelines
- 10. DISI Water Pipeline Project, Amman, Jordan: Testing & Supervision of 66" 84 km Pipeline
- 11. BOTAS Antalya Gas Loop Line, Turkey: Testing & Supervision of 36" - 36 km Pipeline 12. BOTAS Suluova-Havza-Vezirkoprü-Bafra Gas Pipelines, Turkey: Testing & Supervision of 36" - 110 km Pipeline
- 13. BOTAS Ordu-Giresun Phase III Gas Pipeline, Turkey: Testing & Supervision of 16" 60 km Pipeline
- 14. BOTAS West Black Sea Natural Gas Pipeline Project, Turkey: Testing & Supervision 16" 108 km + 14" 17 km + 12" 46 km Pipelines

15. BOTAS East Black Sea Phase II Natural Gas Pipeline Project, Turkey: Testing & Supervision of 16" – 117 km + 18" - 74 km + 12" – 22 km Pipelines

OILFIELD SERVICES

1. Gulf Keystone Petroleum International – PF2
Turnaround Services, IRAQ: Provision of
Maintenance, Overhaul, Alteration, RBI
services for Crude Oil Stabilizer & Separators
2. Gulf Keystone Petroleum International – PF1
Turnaround Services, IRAQ: Provision of
Maintenance, Overhaul, Alteration, RBI
services for Crude Oil Stabilizer & Separators
3. Gulf Keystone Petroleum International – PF1
Crude Oil Tank Maintenance Services, IRAQ:
Provision of Maintenance, Overhaul,

LADNOS NATIT

Alteration, RBI services for Crude Oil Storage Tank

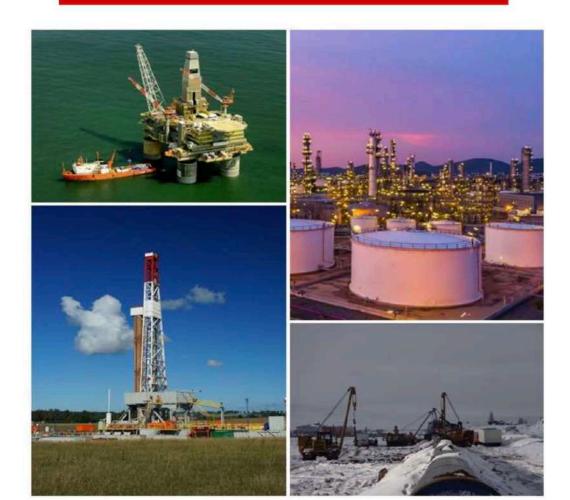
- 4. Gulf Keystone Petroleum International PF1 Risk Based Maintenance Services, IRAQ: Provision of Criticality Analysis, Screening and Maintenance Management Consultancy Services
- 5. TUPRAŞ, Batman Refinery 30.000 m3
 Bitumen Tank Construction, TURKEY: Design,
 Fabrication, Erection, Inspection & Testing,
 Coating and Insulation of 30.000 m3 Bitumen
 Storage Tank including Connecting piping and
 auxiliaries.

6. TUPRAŞ Kırıkkale Refinery – Polymer Modified Bitumen Plant Design Services, TURKEY: Front End Engineering Design, Basic end Detail Engineering Design Services Including Capital Investment Estimation 7. BOTAŞ Ceyhan Storage Tanks Revamp Project, TURKEY: Turnaround Planning and Estimation Study for 21 Above Ground Storage Tanks

LAGNOS NATIT

OTHER SERVICES

- 1. Anagold CSEP Expansion Project TURKEY: Quality Management Services for Erection of 25 storage and process tanks, 40.000 WDI piping, 3 Thickeners, 900.000 Tons of steel structure and installation and commissioning of over 500 static and rotating equipment.
- 2. MKEK Kırıkkale Ammunition Factory TURKEY: Risk Engineering Survey for 9 Manufacturing Shops. Cost Benefit Analysis and Risk Benefit Analysis for Process Safety Investments
- 3. ERDEMİR Steel Mill TURKEY: Risk Engineering Survey for 9 Manufacturing Shops. Cost Benefit Analysis and Risk Benefit Analysis for Process Safety Investments.
- 4. ERDEMİR Steel Mill TURKEY: Process Safety Audit and GAP Analysis



5. TUPRAG Kışladağ Gold Mine Expansion
Project, TURKEY: Procurement Management
Services for Mine Trucks, Gyratory Crushers,
Cone Crushers, Mining
Scale Front End Loaders
6. DEMİRCİLER Geothermal PP Construction
Project, TURKEY: NDT Services for
Construction Works.

OIL & GAS SOLUTIONS

Construction – Services - Supply

CONSTRUCTION SERVICES

What are we doing?

- Architectural & Structural Drawing Design
 Of Projects
- Rough Works Projects
- Final Works Projects
- Mechanical Projects
- Electrical Projects
- Project Management -PRIMAVERA P6 And another PMP PROGRAMMES

LAGNOS NATIT

- HIGHWAY PROJECTS
- TUNNELS PROJECT NATM & TBM
- RAILWAY -METRO-HIGH SPEED TRAIN PROJECTS
- HIGHRISE PROJECTS
- AIRPORT PROJECTS
- MOTORWAY PROJECTS
- BUILDING PROJECTS
- OTELS & HOSPITAL PROJECTS
- NATO PROJECTS
- US EMBASSY PROJECTS
- WIND ROSE PROJECTS
- SOLAR ENERGY FIELD PROJECTS
- DAM PROJECTS
- VIADUCT -BRIDGE PROJECTS
- SUPERSTRUCTURE PROJECTS
- PREFABRICATED CAMP PROJECTS

LAGNOS NATIT

REFERENCES OF CONSTRUCTION

- -SERBIA KULA TOWER ROUGH AND FINISHING
- PROJECTS PART OF OTEL -SUBCONTRACTOR
- -ATHENS US EMBASSY PROJECT -ROUGH
- **WORKS-SUBCONTRACTOR**
- -DHAHRAN US EMBASSY PROJECT -ROUGH
- **WORKS-SUBCONTRACTOR**
- -ROMANIA MOTORWAY PROJECTS PART OF
- **VIADUCTS-SUNCONTRACTOR**
- -POLAND 2nd WAR MUSEUM ROUGH
- **PROJECTS SUBCONTRACTOR**
- -MONTENEGRO PORTONOVI OTEL PROJECTS
- **ROUGH WORKS OF VILLAGE PROJECTS-**
- **SUBCONTRACTOR**
- -CROTIA ROCK HOME PROJECTS-
- **SUBCONTRACTOR**

LADNOS NATIT

- -RIYADH METRO PROJECTS RAIL, TBM TUNNELS -VIADUCT SUBCONTRACTOR -KONYA TURKEY SOLAR ENERGY FIELD
- PROJECT-SUBCONTRACTOR
- -iZMIR TURKEY WIN ROSE PROJECT-SUBCONTRACTOR
- -KRASNODAR SMALL DAM PROJECT-SUBCONTRACTOR
- -SERBIA SUPERSTRUCTURE PROJECTS-CONTRACTOR
- -NIGERIA SUPERSTRUCTURE PROJECTS-CONTRACTOR
- -LIBYA FACTORY PROJECT-CONTRACTOR
- -TURKEY SIVAS HIGH SPEED TRAIN PROJECT-SUBCONTRACTOR
- -TANZANIA -RAIL PROJECT -SUBCONTRACTOR

- -SIIRT TURKEY NATM TUNNEL PROJECT SUBCONTRACTOR
- -KRASNODAR FACTORY PROJECT-CONTRACTOR
- -MOSCOW APARTMENT PROJECT CONTRACTOR
- -IRAQ APARTMENT PROJECT-SUBCONTRACTOR
- -QATAR MOTORWAY PROJECTS -
- **SUBCONTRACTOR**
- -QATAR REFINERY PROJECTS-SUBCONTRACTOR
- -BAHRAIN BAPCO RENEVATION REFINERY PROJECT-SUBCONTRACTOR
- -TENGIZ 3GI PROJECT-SUBCONTRACTOR
- -AFGHANISTAN US-NATO ARMY BASE PREFABRICATED PROJECT-CONTRACTOR

LAGNOS NATIT

-AFGHANISTAN WATER TANK PROJECT-SUBCONTRACTOR -TURKEY ANKARA MOTORWAY PROJECT-SUBCONTRACTOR

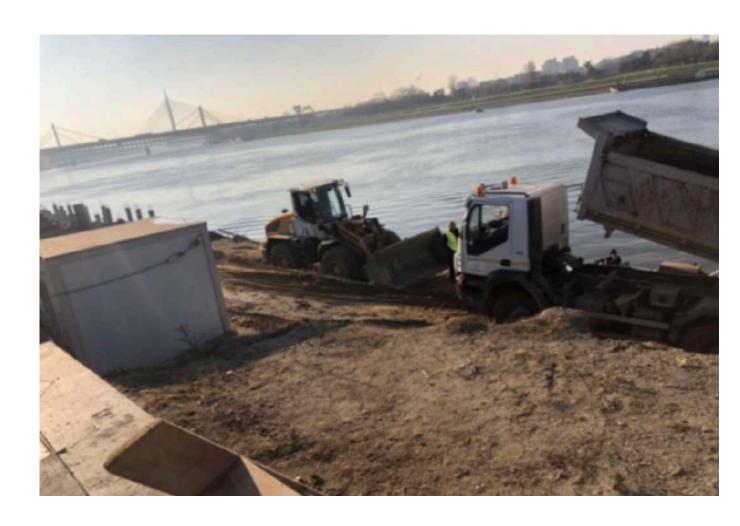
In the above projects, we have worked together with our company and engineer team in the subcontractor and project management parts and are proud to complete it successfully

Some Of The Projects We Have Completed

Turkey

Crotia

Montenegro



Podgorica- 8000 m2 Masonry Projects

LADNO2 NATIT

Serbia

Novisad-10.000m2-Finishing Works Project- Finised

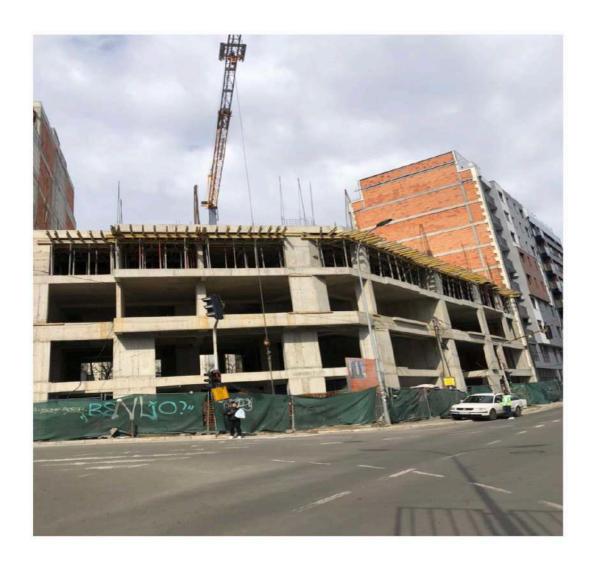
LAGNOS NATIT

Kragujevac-4000 m2 - Finished

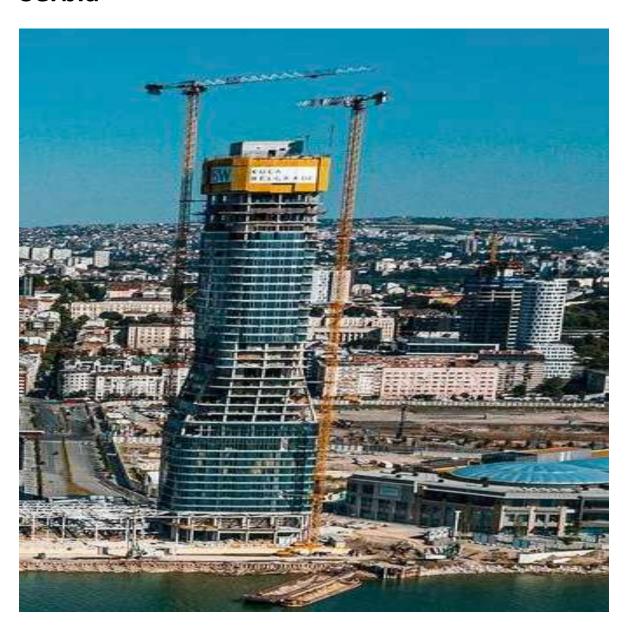
LADNO2 NATIT

Kraljevo-4000m2-Rough Works Project-As Finised

NoviSad-2000m2-Roughly Works Project-Finished



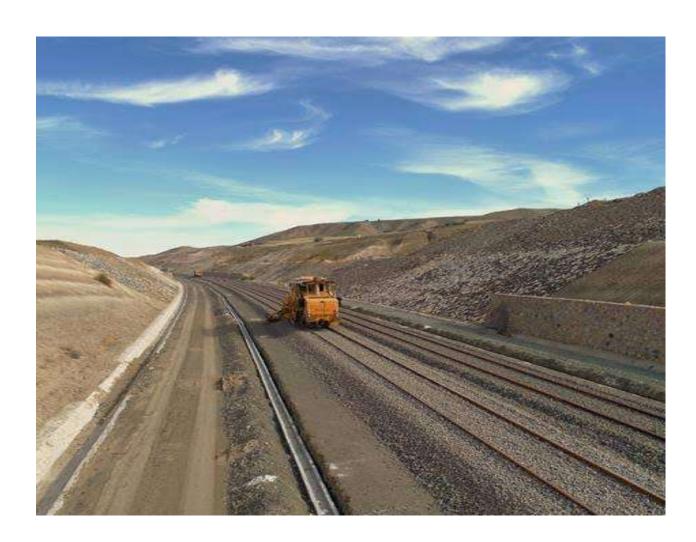
Belgrade -4000 m2 Rough Works Project



LAGNOS NATIT

Serbia

Turkey



LADNOS NATIT

Tanzania

LADNOS NATIT

LADNOS NATIT

Qatar

LAGNOS NATIT

Saudi Arabia

Russia

Tengiz

Saudi Arabia

Poland

LADNOS NATIT

Romania

Saudi Arabia

Greece

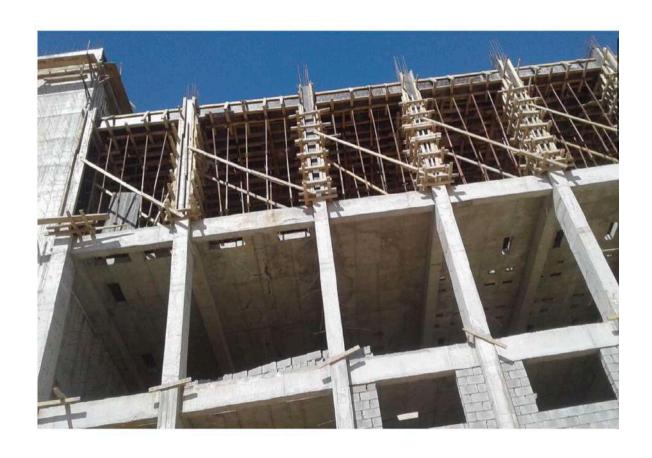
Montenegro

NIGERIA

*Nigeria/Kontagora Technologhy School Project 3000m2

*Nigeria/Kontagora Dormitory Building 3000m2

<u>Lıbya</u>



LADNO2 NATIT

LAGNOS NATIT

*Lıbya /Mısurata Flour Factory Project 10.000 m2

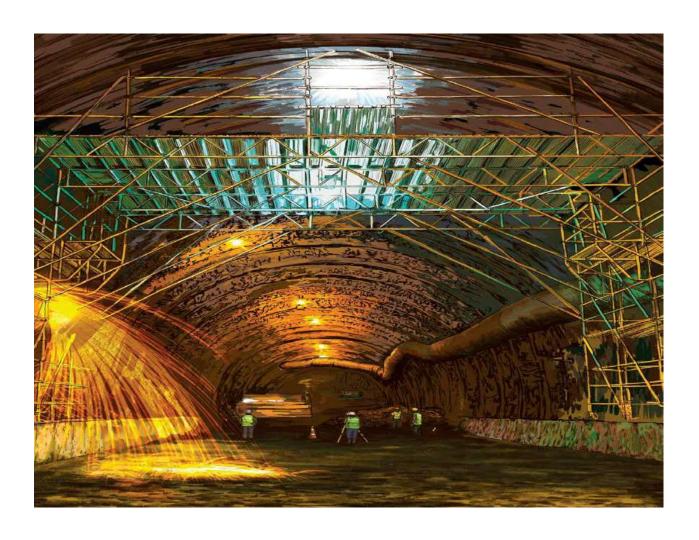
LADNOS NATIT

<u>Iraq</u>

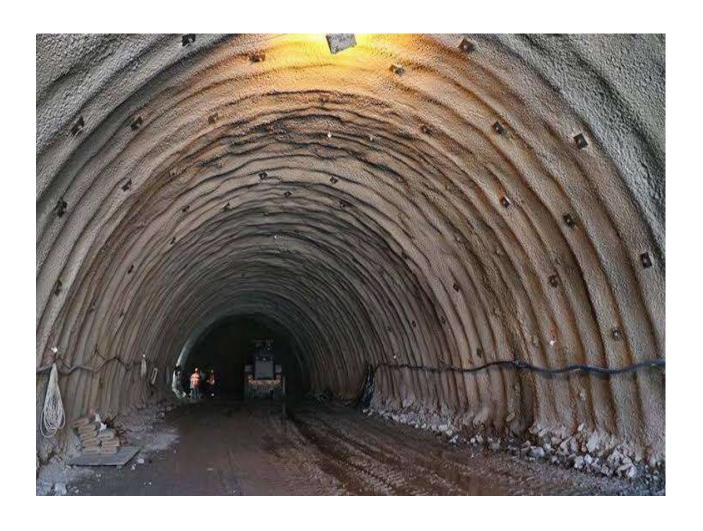
*Iraq Gate Project 15.000 m2

Russia

^{*}Krasnodar Steel Factory Office Building -6000m2



*Moscow Apartment Project 20.000 m2



Turkey

LADNO2 NATIT



Bahrain

AFGHANISTAN

LAGNOS NATIT

REPORTING SERVICES

Under the umbrella of international Crirsco standards applicable all over the world, resource and reserve reporting practices in the UMREK, NI-43-101 and JORC standards applicable in our country are carried out in accordance with all standards by two companies based abroad with our business partnership and

authorized Umrek Competent Persons in the country.

WELL MEASURING DEVICE

It is used with Reflex brand electronic well measuring devices for well measurements. Along with valuable information, Reflex measuring devices are used as auxiliary equipment for finding and directing direction in mineral, oil and natural gas drilling, tunnel and ground drilling.

This device is more accurate and easier to use than mechanical or photographic devices. Reflex devices have measurement knowledge with no unhealthy chemicals, time-consuming film processes, or complex calculations.

GROUND WORKS SERVICES

GEOPHYSICAL APPLICATIONS

- * Seismic methods (refraction-reflection-MASW-REMI)
- * Electric Resistivity (Des-tomography)
- * IP method
- * Magnetic Methods
- * Microtremor Method
- * Ground Radar Method
- * Microgravity Method
- * Seismic Hazard Analysis Report

OUR PRACTICES GEOLOGY

- * Geological/Geotechnical Studies Based On Zoning Plan
- * Geological Drilling Studies
- * Presiometer Experiments
- * Pressurized Water Test Experiments
- * CPT-taper penetration experiments
- * Proctor Experiments
- * Sand Cone Experiments
- * **Ground Improvement Projects**
- * Injection Studies
- * Preparation Of Geological Maps
- * Hydrogeological Studies
- * Landslide Surveys
- * Road and Route studies

GROUND STUDIES

In order to determine the floor properties on which the building, workplace, factory, warehouse and all kinds of similar structures will be built, measurements made with geophysical devices and samples taken from drilling points should be examined together and the floor parameters should be determined.

The results obtained are used in determining how to build the structure to avoid damage in a possible earthquake and in determining the behavior characteristics of the ground during an earthquake.

GEOTHERMAL DECKING

Our country is among the few countries in the world in terms of its underground decency. Meeting the needs of energy and raw materials, which are the basis of the economy, shapes the economies of the country in proportion to the use of Natural Resources. In this sector, where investment and operating costs play a decisive role, achieving the most efficient results in the shortest time in the most economical ways has become the most basic need of all investors.

Geothermal Energy, a reliable source of energy that is sustainable, renewable, both low-cost and environmentally friendly compared to other fossil fuels in the field of energy, is a highly preferred alternative energy source today.

In the research of this resource, very successful results can be obtained in a short time with scientific studies. Active Earth Sciences is proud to achieve successful results in this field with its expert and experienced engineer staff, Geophysical method applications, geological field studies and geochemical analyses.

GEOTHERMAL DECKING

In these studies, the joint application of various branches of Geosciences has become the choice of investors with its successful results in terms of time and cost.

Geological studies conducted by our company in this area; * regional and regional geological field studies

- * Determination Of Formation Of Faulting Mechanisms Investigation Of Possible Reservoir Structures
- * Creation Of Geological Maps
- Geophysical studies conducted by our company in this field;
- * Microgravity Method
- * Vertical Electric Drilling
- * Natural Potential Method

- * Modeling of geophysical data and creating three-dimensional maps geochemical studies conducted by our company in this field;
- * Radon Gas Measurements
- * CO2 gas measurements
- * Taking samples from surface waters and existing wells in the field

DECOMMISSIONING

Turkey has a significant potential in terms of its underground wealth. Geological and geophysical surveys carried out in the fields taken by investors in order to bring this potential to the economy are the first and most important step taken on this path. The economic value of a mine site is determined as a result of the studies conducted and the amount of ore to be produced is determined by these studies.

By using scientific methods in the exploration of mineral deposits, reserves are calculated at less cost in a short time and contribute to the country's economy.

For this purpose, as active Geosciences, we are proud of achieving successful results in the exploration of all kinds of mineral deposits and the calculation of possible reservoirs by the application of geophysical methods as well as geological field studies.

SEISMIC METHODS

In the seismic method, the way in which elastic waves formed by a source are propagated by refraction or reflection in the ground is measured. These time-distance records are then processed with appropriate methods, creating underground models that determine the thickness and seismic wave velocities of layered environments.

Explosives and other energy sources are used to generate seismic waves, and seismometers or geophone systems are used to detect ground movement that occurs as a result. The basic seismic search technique consists of generating seismic waves and measuring the

time required for waves going from sources to geophone decks.

Seismic methods are divided into two groups: seismic refraction (refraction) and seismic reflection (reflection) according to the beam paths followed by seismic waves emitted from the source.

In addition to seismic methods, MASW and REMI methods, which were developed to take measurements in environments with a lot of environmental noise, are also very widely used today October.

SEISMIC REFRACTION METHOD Areas Of Use

- In all soil surveys carried out before and after construction, in order to find engineering parameters of the floors,
- * Characterizing P waves and thus determining detachability and Excavability,
- * Seismic risk and seismicity studies in residential areas,
- * Investigation of buried faults and landslide boundaries,
- * Groundwater geometry, depth and boundary determination,
- * Archaeogeophysical studies

Seismic Reflection (Seismic Reflection) method focuses on the refraction properties of sound waves sent underground at the structure boundaries within the Earth. In the seismic refraction method, it is possible to examine the seismic velocities (hence the robustness parameters) of the geological units (layers) of the ground and the depths of these layers in detail.

SEISMIC REFLECTION METHOD Areas Of Use

- * Engineering structures (large buildings, dams, highways, railways, etc.) solution of possible bedrock (foundation) problems on the floors where they sit and route analysis of roads,
- * Mapping of buried structures of archaeological value,
- * Geothermal resource research,
- * Investigation of deposits and geometries of coal-bearing mines,
- * Determination of natural gas / oil resources and reserves,
- * Detailed bathymetry and deposition of marine and stream bases (sediments) mapping,

- * Investigation of crustal thickness in largescale scientific projects,
- * Investigation of faulting and landslides
 Seismic Reflection (Seismic Reflection) method,
 as the name suggests, the structure boundaries
 and reflections of the sound waves that we
 give underground as a source are measured
 from objects inside the earth. It is one of the
 most important methods for creating
 structural / stratigraphic sections of
 underground.

MASW METHOD

It is an interpretation technique used to find the S rate of data obtained in the refraction study. Physical properties of underground layers (shear modulus, elasticity modulus, noncompaction modulus, natural Tuesday period, seismic magnification, poisson ratio, etc.) is directly related to shear (S) speed. Therefore, the determination of s-velocity changes of subsurface layers is very important from the point of view of geotechnical engineering. In recent years, the multi-channel analysis of surface waves (MASW) method has been widely used alongside the seismic refraction method in determining s-velocity changes. Especially in cases where the seismic refraction

method cannot be applied, the MASW method is seen as the only alternative method. By preserving the sequence geometry used in measurement acquisition by seismic refraction method, MASW records can be collected and greater research depth can be obtained. Other advantages of the method include fast data collection, easy data processing, and the decipherment of the low speed problem.

REMI METHOD

Masw-active source line measurement is carried out to determine S wave rates from geophysical studies conducted within the scope of the ground research report. Surface waves have been characterized as noise in other seismic methods until recently and have been removed from the data. Later, thanks to developing technologies and software, the information carried by surface waves began to be studied.

It has been an effective way of calculating the shear wave, which is an indicator of the strength of the ground, and has played important roles in various studies. Methods

such as Remi and microtremor are effective methods used in shear wave calculations based on surface waves. But in these methods, the source is external noises (wind, traffic, etc.) because it is, the source is uncontrolled, and many difficulties are encountered in the processing phase of the received data. At this point, the multi-channel analysis of surface waves (MASW) method is used in shallow ground research.

Its biggest advantage over other methods is that the source is controlled. S wave velocity structure of the place can be determined by using active and passive welded surface wave methods. There are two steps to this. The first of these is the determination of the dispersion curve of the studied area. The aim of all surface wave methods is to obtain the

dispersion curve of the area under study. The dispersion curve is different for all methods. MAGNETIC METHOD

Applications

- * Mineral Exploration
- * Determination Of Fault Lines
- * Sediment Thickness Studies
- * Basic Rock Research
- * Continental gliding and seabed spreads
- * Determination of pipelines, cables and toxin wastes
- * Unexploded Military Ammunition
- * Abandoned oil wells
- * Archaeological Structures
- * Waste Areas

In metallic mines, studies are carried out to determine the mine bed, especially with the application of magnetic method. This method

determines the formation and extension of ore according to its magnetic properties and determines the properties at all points of the field with 3-dimensional cross-sections with maps prepared in the light of the data obtained. These studies are carried out by our company with the "G-856AX" model Proton Magnetometer produced by Geometrics.

MICROGRAVITY METHOD

Applications

- * Basin Geometry
- * Regional Geological Studies * Mineral Deposits
- * Underground Cavities
- * Fault and fracture structures
- * Base Rock Depth
- * Works For Military Purposes
- * Volcanic Monitoring
- * Shell Studies
- * Search For Embedded Structures

 Determination of mineral deposits by
 microgravity method provides very efficient
 results both in terms of application and in
 terms of time. By this method, the necessary

investment calculations are carried out by obtaining information about the determination of rocks with different density under the ground and the determination and extension of the possible mineral deposit. These studies are carried out by our company with the "CG-5 Autograv Gravity Meter" model device produced by Scintrex.

IP AND RESISTIVITY METHOD

Applications

- * Geological surveys
- * Structural research in large basins
- * Geothermal energy and water exploration
- * Salt water containing environments
- * Faults and contaminated zones (in terms of salts)
- * The thickness of the degraded and decomposed levels on the base rock mines, disseminated and massive sulfurous ores
- Archaeology

The IP method is an intensively applied method in metallic mineral exploration. Applications made due to changes in the electrical properties of rocks with time and

frequency, especially sulfur ore, graphite, oil and natural gas, are used in industrial raw materials exploration. Visible resistivity values are also taken during IP measurement. In addition to IP sections, the preparation of resistivity sections contributes to the joint evaluation of the work in the field. These studies are carried out by our company with "VIP 10000" and "ELREC PRO" model devices belonging to IRIS company.

GROUND RADAR (GPR) METHOD Applications

- * Road, Airport, dam, water channel, power plant, residential area ground surveys,
- * Railway, Highway, water tunnels, tube crossings, mine gallery surveys,
- * Examination of ceilings, floors and walls, restoration research,
- * Discovery of ancient city, Temple, Tomb, Wall, Foundation, dehliz and similar historical remains,
- * Research of industrial waste, leakage and environmental pollution,
- * Old sewer, Waterway, Canal, pipe, shelter, electricity and telephone lines discovery,

- * Forensic and Forensic Medicine: detection of prison escape tunnels, location of bodies and mass graves,
- * Exploration of Mines near the surface and reserve development, coal research, first aid in dents and mine accidents.

The ground radar (GPR) method is a high-frequency electromagnetic, geophysical method used for near-surface surveys. Waves moving in the ground rise again by reflection or scattering when they encounter any object that will give an anomaly, and they are recorded as a function of time with the help of the receiving antenna, control unit and recorder on the surface.

Although the GPR method is a method used in determining soil stratigraphy, determining geological units near the surface, it is also used in determining vessel-type mineral deposits and determining progress directions in gallery-type mineral ore enterprises.

SEISMIC HAZARD ANALYSIS REPORTS Applications

- * Dams, ponds for drinking water, irrigation, energy purposes hydroelectric power plants
- * Drinking water treatment plants and transmission lines
- * Bridges, high structures, schools, hospitals, etc. structures

The effect of an earthquake of any magnitude in a region in the form of damage and loss of life to structures at a certain distance is defined as an earthquake hazard.

In order to calculate these effects, it is necessary to know the inputs such as geological, Seismological and strong ground motion, but since this information contains a lot of unknowns, seismic hazard analysis is performed with certain theoretical approaches. The aim of this report is to identify the seismic hazard that will occur as a result of the earthquake exposure of the planned project.

SEISMIC HAZARD ANALYSIS REPORTS

- * Compilation of seismotectonic data within the area that constitutes a seismic hazard for the region
- * Seismic source zoning in the light of the compiled seismotectonic data and determination of the maximum magnitudes that existing faults in the region can produce
- * Correlation with earthquake records that have occurred within the region in order to select Azalea relationships that will accurately represent the seismic source region
- * Calculation of the largest Earth motion or acceleration of the largest earthquake that can occur by deterministic calculation with selected Azalea relationship formulas
- * Obtaining the maximum horizontal ground acceleration for the project location,

probability distributions of exceeding, hence annual seismic curves, taking into account the uncertainties of all parameters of interest, using software in the application of the probability method

- * Creation of response Spectra corresponding to various durations of the structure as a result of deterministic and probabilistic calculations
- * Calculation according to the removal of alluvium at the project site in determining the earthquake behavior spectrum and preparation of spectral acceleration graphs
- * Both the probability method and the deterministic method are the parameters that the project engineer will apply.

References-Ground Study

IGA airport management A.P. (CMLKK ADI PARTNERSHIP)

Istanbul New Airport (3. Airport) Terminal Building and Pier structures Geophysical Survey Report

Polymetal mining a.P.

Geophysical Surveys Of Gediktepe Waste Dam In Bigadiç District Of Balıkesir Province MINISTRY OF JUSTICE IZMIR OPEN CRIMINAL AND ENFORCEMENT AGENCY

Geological-geotechnical survey report based on Nazim Zoning Plan of Aliaga district of Izmir province

Deerns-PROTA Engineering Co.S

Itob Turkcell data Center ground survey report in Torbalı district of Izmir province

T.C. MINISTRY OF EDUCATION-DEPARTMENT OF CONSTRUCTION AND REAL ESTATE **Muğla Province Educational Institution Buildings Ground Study Reports** T.C. MINISTRY OF EDUCATION-DEPARTMENT OF CONSTRUCTION AND REAL ESTATE **Aydin Province Educational Institution Buildings Ground Study Reports** T.C. MINISTRY OF FDUCATION-DEPARTMENT OF CONSTRUCTION AND REAL ESTATE **Uşak Province Educational Institution Buildings Ground Study Reports** T.C. MINISTRY OF EDUCATION-DEPARTMENT OF CONSTRUCTION AND REAL ESTATE **PROTA engineering a.S** Üçyol-Buca Koop Metro Line Geological and geotechnical survey report **PROTA engineering a.S**

F.Altay-Narlidere Metro Line Geological and geotechnical survey report
TÜRK TELEKOM A.P. - ASSISTT
Assistt Settlement Of Konak District Of Izmir Province Education Building Ground Study Report

T.C. MINISTRY OF EDUCATION-DEPARTMENT
OF CONSTRUCTION AND REAL ESTATE
Izmir Province Educational Institution Buildings
Ground Study Reports

T.C. MINISTRY OF EDUCATION-DEPARTMENT
OF CONSTRUCTION AND REAL ESTATE
Yalova Province Educational Institution
Buildings Ground Study Reports
T.C. MINISTRY OF EDUCATION-DEPARTMENT
OF CONSTRUCTION AND REAL ESTATE
Denizli Province Educational Institution
Buildings Ground Study Reports

T.C. MINISTRY OF EDUCATION-DEPARTMENT OF CONSTRUCTION AND REAL ESTATE **Buildings Of The Educational Institution Of Manisa Province Ground Study Reports** Kütahya Province Educational Institution **Buildings Ground Survey Reports** T.C. MINISTRY OF EDUCATION-DEPARTMENT OF CONSTRUCTION AND REAL ESTATE **Educational Institution Buildings Of Çanakkale Province Ground Survey Reports** T.C. MINISTRY OF EDUCATION-DEPARTMENT OF CONSTRUCTION AND REAL ESTATE **Bursa Province Educational Institution Buildings Ground Study Reports INSITU GEOLOGY LTD. ŞTI.** Melen Dam Power Plant Building Geophysical **Studies In Sakarya Province** AKER ENGINEERING LTD. ŞTI.

Geophysical Studies Of Permeable
Invertebrates
INSITU GEOLOGY LTD. ŞTI.
Geophysical Surveys of Tenehan res

Geophysical Surveys of Tepehan regulator and HES building of Malatya province ENI energy A.S

Torbalı district of Izmir province solar energy panels ground Study Report LABRIS INTERNATIONAL CONSTRUCTION LTD. \$TI.

Bornova District Of Izmir Province Factory
Construction Ground Strengthening
Experiments Study Reports
People Energy A.S

Ankara province Şeferlikoçhisar District solar energy panels ground Study Report T.C. MINISTRY OF EDUCATION-DEPARTMENT

OF CONSTRUCTION AND REAL ESTATE

Balıkesir Province Educational Institution Buildings Ground Study Reports ATAK CONSTRUCTION LTD. ŞTI.

Esen Tea Breeding Ground Study Reports In Seydikemer District Of Muğla Province PROJECT WORKSHOP ARCHITECTURE ENGINEERING LTD. ŞTI.

Ground Survey Reports Of Cesme District Of Izmir Province

INSITU GEOLOGY LTD. ŞTI.

Geophysical studies of Nurdağı Kartaldağı RES of Gaziantep province

People Energy A.S

Solar Energy Panels Ground Study Report In Salihli District Of Manisa Province

People Energy A.S

Solar energy panels floor Survey Report in Sivrihisar District of Eskisehir province

T.C. KATIP ÇELEBI UNIVERSITY Izmir Province Çiğli District Campus Area Wind Turbine Ground Study

LABRIS INTERNATIONAL CONSTRUCTION LTD. \$TI.

Factory Construction Ground Survey Reports In Bornova District Of Izmir Province HUAWEI TELECOMMUNICATIONS LTD. ŞTI. Ground Survey Reports Of Base Stations Throughout Turkey NORTHEL energy A.P. Ground Survey Reports Of Wind Turbines Throughout Turkey INSITU GEOLOGY LTD. ŞTI. Mersin Gülnar Elmalı RES Geophysical Survey

Report

BETONSA SAN. AND TIC. A.P.

Construction Of A Concrete Plant In Aliaga
District Of Izmir Province Drilling Service
LABRIS INTERNATIONAL CONSTRUCTION LTD.
ŞTI.

Construction of leather OSB factory in Menemen District of Izmir province ground survey reports

LABRIS INTERNATIONAL CONSTRUCTION LTD. ŞTI.

Factory Construction Ground Survey Reports In Menemen District Of Izmir Province

T.C. PRIME MINISTER TOKI

Revised Ground Study Report On Alsancak Stadium Zoning Plan In Konak District Of Izmir Province

Aegean iron and steel A.P.

Wind Power Plant drilling and ground survey report in Foca District of Izmir province

Tarish YEMTA a.P.

Grain silos and service buildings ground survey report of Bergama district of Izmir province

REFERENCES-MINING AND GEOTHERMAL

A. MINING OKSUTP. - CENTERRA GOLD
Geophysical Survey Measurements Of
Microgravity Method Of Mining Sites Of Develi
District Of Kayseri Province
Harvest BNO Group Mining A.P.
Krom Field Survey and reserve account of
kuyceğiz District of Muğla province
GES mining a.P.

Geothermal Research In Hisarcık District Of Kütahya Province BILFER Mining Co.P.

Elazig province Karakoçan District Chrome Field Survey and reserve account OYASTONE a.P.

Due diligence of Turkey-wide iron mineralization

Pınarbaşı Mining Co.P.

Due Diligence Of Manganese Mineralization In Turkey

YILMAZLAR mining A.P.

Chrome Field Survey and reserve account of divrigi District of Sivas province MTS mining a.S

Mangan mineralization survey and reserve account of hafik District of Sivas province

HUSEYINOĞULLARI a.S

Mangan mineralization survey and reserve account of sulusaray District of Tokat province BILFER Mining Co.S

Magnetic Method Modeling Of Iron
Mineralization In Kemaliye District Of Erzincan
Province

MINECROM a.S

Investigation of the state of iron mineralization in Turkey

PRIVATE PROPERTY

Geothermal resource survey of Ikidegirmen village of Zara District of Sivas province HSC Mining Co.P.

Coal mine survey and reserve account of menemen District of Izmir province ESA mine a.S

Determination Of Metallic Mineral Mineralizations Throughout Turkey PRIVATE PROPERTY

Geothermal Research In Ilica-Hasançelebi - Hekimhan District Of Malatya Province PRIVATE PROPERTY

Chrome mineralization research in Gürlevik Mountain region of Zara District of Sivas province

HSC Mining Co.P.

Coal mine survey and reserve account of Torbalı district of Izmir province

REFERENCES-SEISMIC HAZARD ANALYSIS

Various government agencies and mining companies

40 units (solid waste dam, waste storage plant and bulk Leaching Plant) Seismic Hazard Analysis Reports

DSI 2. Regional Directorate IZMIR water structures

22 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 4. Regional Directorate KONYA water structures

26 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 6. Regional Directorate ADANA water structures

14 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 8. Regional Directorate ERZURUM water structures

38 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 10. Regional Directorate DIYARBAKIR water structures

13 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 12. Regional Directorate KAYSERI water structures

7 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 13. Regional Directorate ANTALYA water structures

2 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 14. Regional Directorate Istanbul water structures

3 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 17. Regional Directorate Van water structures

13 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 19. Regional Directorate SIVAS water structures

24 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 21. Regional Directorate AYDIN water structures

21 (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 23. Regional Directorate KASTAMONU water structures

9 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 25. Regional Directorate Balıkesir water structures

37 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 15. Regional Directorate Sanliurfa water structures

6 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 18. Regional Directorate Isparta water structures

35 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 20. Regional Directorate
KAHRAMANMARAŞ water structures
13 units (Dam, pond and regulator) Seismic
Hazard Analysis Reports

DSI 22. Regional Directorate TRABZON water structures

13 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 24. Regional Directorate KARS water structures

7 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

DSI 26. Regional Directorate ARTVIN water structures

3 units (Dam, pond and regulator) Seismic Hazard Analysis Reports

MACHINE PARK

- *4 Pieces TETRA TD-2500
- *2 Pieces TETRA TD-1500
- *2 Pieces DELTA D-150
 - *1 Pieces SOILTEC 1100
 - *1 Pieces ATALAY 1000
 - *5 Pieces NEW HOLLAND TT-65
- *3 Pieces MITSUBISHI L-200 4X4
- *5 Pieces DACIA DUSTER 4X4
- * 2 Pieces FORD RANGER 4X4
- * 1 Pieces MERCEDES X250 D 4X4
- * 2 Pieces 30 TON Water Truck

Pipejacking Equipment

- * YD3500 Rock Pipe Jacking Machine
- * NPT3700 Slurry Balance Shield Machine
- * NPD3500 Slurry Balance Pipe Jacking Shield Machine
- *TPD3500 Earth Pressure Balance Pipe Jacking Machine

Excavation-Filling Equipment

- 30 Truck
- 10 CAT DIGGER
- 20 JCB
- 10 Mobil Crane
- 10 Volvo DIGGER
- 6 PİPE CRANE
- 10 Volvo

Other Equipments

- 6 Wagon
- 3 NATM JUMBO
- 3 Locomotive
- 1 Micro TBM
- 1 Macro TBM
- Welding Machine
- Welding Equipment

PERSONNEL

- *1 PROJECT MANAGER
- * 2 PROJECT CHIEF GEOLOGIST
- * 2 MS.C ENGINEER OF GEOLOGY
- * 1 GEOLOGICAL ENGINEER
- * 2 MINING ENGINEERS
- *1 CIVIL ENGINEER
- *2 MASTER ENGINEER IN GEOPHYSICS
- *1 YTK SERVICE CERTIFIED ENGINEER
- *1 FIELD FORMEN
- * 1 MASTER'S HEAD
- *22 Operators
- *44 OPERATOR ASSISTANT
- * 5 CAR DRIVER
- * 1 LOGISTICS OFFICER

ALL PERSONNEL WHO ARE EXPERTS IN THEIR FIELD CERTIFICATION

- *FIRST AID TRAINING CERTIFICATES
- *OFF-ROAD SAFE DRIVING TRAINING CERTIFICATES
- *OPERATOR DOCUMENTS
- *HSE, OHS TRAININGS

MADEN SONDAJ ÇALIŞMALARI

MADEN SONDAJ ÇALIŞMALARI

REFERANSLAR

AVOD ALTIN MADENCİLİK A.Ş.

HASAT BNO GRUP MADENCILİK A.Ş.

MTA MADEN TETKİK ARAMA GENEL MÜDÜRLÜĞÜ

ANAGOLD A.Ş.

ALACER GOLD

POLÍMETAL A.Ş.

TUMAD A.Ş.

CINER HOLDING

YILMADEN HOLDING

ALDRIDGE MINERAL A.Ş.

ÇİFTAY İNŞAAT A.Ş.

SILVER GOLD

CEMAS MADENCILIK ENERJI

ALSER KROM İŞLETMELERİ

BİGA BAKIR İŞLETMELERİ

KOLİN MADEN İŞLETMELERİ

ELIF MADEN

GÜMÜŞTAŞ MADENCİLİK

CENTERRA GOLD

ÖKSÜT MADENCILİK

KARADENIZ HOLDING

Mine-Chemical Material And Equipment Supply Service

All Construction Materials

- Concrete batching plant
- Asphalt Plant
- Tower cranes and all kinds of cranes in the required tonnage*
- Desired diameter rebar
- -Lattice Girding
- -Portal Crane*
- -Port Crane *
- -Steel & Rebars
- * We buy all kinds of cranes from Italy, Turkey and China

Supply Of Mineral And Chemical Products

- -Karakaya Bentonite
- -Caustic Soda
- -HCL
- -All Mine Materials, Chemical Materials

ASPHALT MACHINES AND EQUIPMENTS
ASPHALT PLANT
ASPHALT PLANT

CONCRETE PUMP AND PLACING BOOM
CONCRETE PUMP AND PLACING BOOM
CONCRETE PLANT, PUMP ETC.
CONCRETE PLANT
PUMP, PLACING BOOM, ETC
CONCRETE PLANT, MIXER, ETC

EXCAVATOR, LOADER, ETC
EXCAVATOR, LOADER, ETC
EXCAVATOR, LOADER, ETC
EXCAVATOR, LOADER, ETC
HYDRAULIC BREAKER

LIFT, PLATFORM, ETC. LIFT, PLATFORM, ETC.

INDOOR, DISABLED LIFT

CLIMBING PLATFORM
AUTOMATIC SCAFFOLDING
AUTOMATIC SCAFFOLDING

SCAFFOLDING
SCAFFOLDING
SCAFFOLDING
SCAFFOLDING AND FORMWORK
SCAFFOLDING AND FORMWORK
SCAFFOLDING AND FORMWORK
SCAFFOLDING AND FORMWORK
SCAFFOLDING AND FORMWORK

LIGHT TOWER, ETC
TRUCK, TELESCOPIC CRANE
GARBAGE TRUCK CRANE
BRIDGE CRANE
TRUCK, TELESCOPIC CRANE
TELESCOPIC PLATFORM, HYDRAULIC LIFT, ETC
TELESCOPIC CRANE, SHIP CRANE, ETC
TELESCOPIC CRANE, BOOM CRANE, ETC

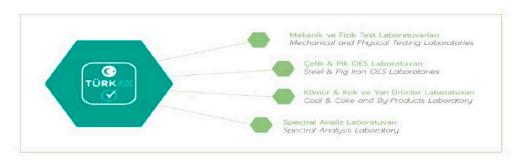
LIGHT TOWER AND GENERATOR

CABLE	
CABLE	
CABLE	<u> </u>
CABLE	

CONSTRUCTION PRODUCT	
CONSTRUCTION PRODUCT	
CONSTRUCTION PRODUCT	
CONSTRUCTION PRODUCT	
CONSTRUCTION PRODUCT	
IPE, PANEL, LIGHTING PRODUCT, ETC	
ANITARYWARE	
TEEL BAR, CRANE RAIL, RAILWAY ACCESSO	RIES
ONSTRUCTION MINI CRANE, SAFETY NET, E	TC

STACKER, PALLET TRUCK, FORKLIFT, ETC	
STACKER, JACK, HOIST, ETC	
STACKER, FORKLIFT, ETC	
STACKER, FORKLIFT, ETC	
STACKER, FORKLIFT, ETC	-
LIFT, FORKLIFT, TELEHANDLER, ETC	
SCISSORS LIFT, ORDER PICKER, ETC	
LIFT, FORKLIFT, TELEHANDLER, ETC	
LIFT, TELEHANDLER, ETC	
STACKER, FORKLIFT, ETC	
LIFTING AND MOVING EQUIPMENT	

CEMENT	
CEMENT	<u> </u>
CEMENT	


Laboratuvarlarımız

TS EN ISO/IEC 17025 standardına göre TÜRKAK tarafından akredite olan laboratuvarlarımızda mekanik ve kimyasal testler

Ayrıca tüm laboratuvarlarımız (Mekanik ve Fizik Test Laboratuvarı, Çelik & Pik OES laboratuvarı, Kömür & Kok ve Yan Ürünler Laboratuvarı, Spectral Analiz Laboratuvarı, Numune Hazırlama ve Teknolojik Test Laboratuvarı, Makro Dağlama Laboratuvarı, Su Kimyası Analizi Laboratuvarı, Merkez Laboratuvarı) TSE Onaylı Laboratuvardır.

Chemical and mechanical tests are carried out according to TS EN ISO/IEC 17025 standards in our laboratories, which are accredited from TURKAK

In addition, all our laboratories is approved by TSE(Mechanical & Physics Test Laboratory, Steel & Peak OES Laboratory, Coal & Coke and By-products Laboratory, Spectral Analysis Laboratory, Sample Preparation and Technological Testing Laboratory Macro Etching Laboratory, Water Chemistry Analysis Laboratory, Central Laboratory)

16

Laboratuvarlarımız

ARREDITASYON KAPSAMMIZDAKI TEST VE ANALIZLER THE SCOPE OF ACCREDITATION TESTING AND ANALYSIS

- Brind Settle Tea (2.5MW/82,5-CHW/3000) TS EN ISO 5506-1 Brind Hordman Teal (2.5MW/82,5-IO-MW/8000) TS EN ISO 55961
- CO CODE: Text (2.0+MVW25-O-MW/000) TE EN EO CODE: Text (2.0+MV700) TE EN EO CODE: Text (2.0+1-120M) (Ortain Sicalog) TE EN EO CODE: Text (2.04-120M)/cottorer (corporation) TE EN EO CO CODE:
- 6CL 6932-7
 Charpy Visino Testi IV Centilis, 3001) (Ortain Scalida, O'C., 439C) TS DN BOL Mil-1
 Chorpy Indoor Feet (V. Notol, 300-3; Anabiero Responsave, O'C., 20°C) TS BN 850-88-1
 Boarne Testi TS 708, TS EN 850-8540-1
 Boarney Testi TS 708, TS EN 800-866-1
- Celliforche Inhitizzon Kenigram Belleformensi (Matod A) -ASTA E 45 Debonning the Incharon Content of Stool (Method A) -ASTA E 45
- ASIM E 45

 Demograph Ray Cythlerinca Mikrayapi fricabatrea EN 18674-1
 Microstructure Exceptoria of Rahvag Ray's Steel CN 18674-1
- ericht-1

 Dermityshi Bay Çeliğində institizyus içeriğinin flatitenemisi 1947-4
 Dermityshi Bay Çeliğində institizyus içeriğinin flatitenemisi 1947-4
 Dermityshi intervelorusi Contons of Robrosy's Bat Steel der 1967-7.
- Bour Businssyon Dounte Rostools EN 19674-1, ASTM PLOTT-M
 Doughtursoon Depth Measurersoot EN 19674-1, ASTM EIOTT-M
- E027-M. Macker Christon (C) Militari Tuprii. ACTM E095 Scribon for Militari Tuprii. ACTM E095 Scribon for Militari Tuprii. ACTM E095 Scribon for Militari For Anciana of Menii Beoring Orea and Related Materials for Cerabon Swife and Acid-Base Characteristics. ACTM E095

- OES Chemical Test ASTM E 419
- sepa la protección (ESE ASTM E 495).

 Optio: Establighte Espatial Analis Discopi Più Discopi (ESE Establis (ESE ESE
- Enstronment Volters de Kimpseul Anelle Kerton, ICA Editor (S) ASTA E1010 Combustion Method with Chemical Test Carbon(C), Advicts ASTA E019
- TGA Yantemeyle Kamur Auetai ASTA D7581 Coal Analysis by TGA Method ASTM D7582
- Rismur Anallitari (çin Humanı Hazirlamı Rismanı ASTM D2013 Standard Practice Sar Prisograng Cool Samplile for Analysis ASTM D2013
- Roman ve CASIa Raction (CI Miktar Alinti Anias Yonton ASTN DELTS Untermination of Cost and Case Lower Heating Value -ASTM 05(32)
- Romeir ve Reiste Toplam Kokort (5) Mikran Tayrin Volksek Secalidation Hija Firmneda Volksek Vantaria ASTM D4E29 Sed Method Air Total Sulfar Lating High-Temperotive Tuber Furnices Combination ASTM D429 Betermination of Coal and Coke Higher Heating Value
 ASTM DSBIS
- Kömle ve Kesta Alt ad Değse Taylıd 150 1938
 Determination of Cool and Colo Lower Peopling Value
 (50: 1938)

Chancebesinics - ASIM DVIS

TSE EN ISO IEC/17025 Standards Kapsaminda Labbiratuvar Onayi Alinabilecek Deney Hizmetleri

TS EN ISO IEC/17025 Standards Scope Of Testing Services That Can Be Taken To Labbiratory Confirmation

Sirketimizin; Our company;

Mekanik ve Fizik Test Labbiratuvari Mechanics and Physics Testing Labbiratory,

Qelik & Pik DES Labbiratuvari Steel & Pig DES Labbiratory,

Numune Alma ve Telenolojik Test Labbiratuvari Sampling and Technological Test Labbiratory,

Spektral Labbiratuvari Spectral Labbiratuvari Coal - Metallurgical Coke - Byproducts Labbiratory

Komur - Kok - Yan drunler Labbiratuvari Coal - Metallurgical Coke - Byproducts Labbiratory

birnyesinche spyrlan 54 actet test/annaliz metodunda gegeril olmak dizere TSE tarafindan, "Deney Hizmeti Alinabilecek Labbiratuvar Kriterlerine Uyguntuk

Tageron Labbiratuvarian " belgemiz wardır has "labbiratory that can be taken Test Service Criteria Conformation - TSE Subcontractor Labbiratores" certivalidated by TSE for the Set tests of analysis method.

AKREDITASYON KAPSAMINDA CLAN LABORATUVARLARIMIZ OUR LABORATORES WITHIN THE ACCREDITATION

- Merantic on First Test Laboratory Mechanic and Physic Laboratory
- Steel Pig OES Laboratory
- Komor, Kok ve Yan Drovier Laboraturary
 Cool, Coke ond By Products Loboratory
- Spectral Analyst Laboratoral Spectral Analysis Laboratory

Çubuk ve Kangal Haddehanesi Bar and Wire Rod Mill

Kardemir büyüme stratejileri kapsamında ve katma degeri yüksek ürünler üretme hedefi doğrultusunda 700.000 ton/yil kapasiteli Çubuk ve Kangal Haddiehanesi 2016 yili tibari ile üretime başlamıştır. Yapılacak ilave yatırımları ile üretim kapasitesinin 1.400.000 ton/yil'a çıkarılması hedefienmektedir.

Çubuk ve Kangal Haddehanesinde 4 ayrı nihai mamul grubunda üretim yapılmaktadır; - Kangal, 5,5-25 mm - Nervürlü Kangal, 5,5-25 mm - Kalin Kangal (Garret), 20-56 mm - Yuvarlak Çubuk, 20-100 mm - Nervürlü Çubuk, 8-40 mm

Cubuk ve Kangal Haddehanesinde Oretilecek çelik kaliteleri aşağıda belirtilmiştir. Düşek ve Orut Karboniti Çelikler *Lestalik Karboniti Çelikler *Lestalik Karbinitik Çelikler *Elestalik Karbinitik Çelikler *Elestalik Karbinitik Çelikler *Ongerilmel Beton Çelikleri (PC wires) *Lastik Teli (Tire Cord) *Otomat Çelikleri (BRG)

MeerDrive (Monobloct) ve PSM (Precision Sizing Mill) teknolojilerine sahip haddehanede dar çap ve ovalite toleranslarında üretim yapılabilmektedir.

- pulabilmektedir.

 Çubuk ve Kangal Haddehanesinde üretliecek ürünlerin yarı mamulleri (kütük), sürekli
 döküm yöntemiyle ulusal ve uluslararası kalite standartlarında üretlimektedir.

 Nervürlü Çubuk üretimleri 6 12 m boya
 sahip paketlerde,
 Yuvarlak Çubuk üretimleri 6 12 m boya
 sahip paketlerde,
 Nervürlü Kangal üretimleri 2,1 2,7 ton
 ağırlığında olacaktır.

 Kangal üretimleri ise 2,1 2,7 ton ağırlığında olacaktır.

Tanitim Filmi

Kardemir due to growth strategies and with the goal of producing value added products, has established Bar and Wire Rod Mill which has 700.000 tons/year capacity. New mill has started production in 2016. With additional investments, production capacity will be 1400.000 tons/year.

Bar and Wire Rod Mill has ability to produce a wide range of different final products.

- 5,5-25 mm Wire rod.

- 5,5-25 mm Ribbed Wire Rod

- 20-56 mm Bar in coil (Garret)

- 20-100 mm Round Bar

- 8-40 mm Rebar

- isted below,

 Low and medium carbon steels

 High Carbon steels (TC, SPR Steel, HRW)

 Bolts and Nuts steels (TC Gold Heading Steel)

 Welding Wires (WW)

 Prestressed concrete steel (PC Wires)

 Tire Cord

 Free Cutting steels (FC Steel)

 Bearing steels (BRG)

New mill has MeerDrive (Monoblock) and PSM (Precision Sizing Mill) technologies, which give ability producing in specific diameter and ovality tolerances.

Semi products (billets) which are going to be used in Bar and Wire Rod Mill is produced by continuous casting process with international quality standards.

Rebar in package, 6 – 12 m length.
Round bar in package, 6 – 12 m length.
Ribbed Wire rod weight between 2.1 – 2.7 tons.

Wire rod weight will be between 2.1 – 2.7 tons.

18

Kangal Wire Rod / Garrets (Bar in Coils)

a Çapı Okumeter (d) Çap Tol Tolerance or

Quality Tolerana * / Tolerance of Osality * (rom) June WCSE BOS. of the board tolerance are the character

Boyut Standardi Dimension Standart

TS EN 10108 Müşteri talebi ile diğer boyutlar

Muşteri talebi ile diğer kəliteler

Yüzey Kalitesi Standardı

Surface Quality Standart
TS EN 10221
Muster talebille diger kaliteler

Australia Scording to customer's request

Ray ve Profil Haddehanesi Rail & Profile Rolling Mill

Şirketimiz, Türkiye ve bölge ülkeler arasındaki tek ray ve ağır profil üreticisidir. Bu amaçla kurulmuş olan 450.000 ton/yil kapasıteli Ray-Profil Haddehanemiz 2007 yılında işletmeye alınmıştır.

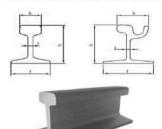
kapasteli kay-froli Haddoenanemiz 2007 yılında işletineye alınmıştır. İleri teknoloji ile donatilmış olan tesisimizde en az seviye 2 kullanıcı sertifikasına sahip operatörler görev yapmaktadır. Tesiste, uluslarırası standartlarda 12-75 m arası (46-60 kg/m) rayların yanı sıra R350 HT sertleştirilmiş rayları ile 50R1, 60R2 ve 59R2 oluklu ray üretimleri gerçekleştirilmektedir. Avrupa'da sadece birkaç ray üreticisinin sahip olduğu HPO belgesine de sahip olan şirketimiz, Ray-Profil Haddoenanesinde geometrik kontrollerin yapıldığı girdap akımları ve iç kontrollerinin yapıldığı girdap akımları ve iç kontrollerin yapıldığı girdap akımları ve iç kontrollerin oluşan modern bir test merkezi bulunmaktadır. Şekil ve ölçü kontrollerinin online lazer sistemi ile yapıldığı bu tesiste, milmetrenin yüzde biri hassasiyetle üretim gerçekleştirilerek, %98 kalite oranı ile çalışılmaktadır.

kalite oranı ile çalışılmaktadır. Şirketiniz ağır profil üretiminde de dikemizin tek üreticisidir. IPE, NPI, NPU, HEA ve HEB tiplerinde profil üretimi, eşitkenar ve çeşitkenar köşeberitler, ø 220 mm'ye kadar kalın yuvarlaklar ve maden direkleri üretimi gerçekleştirilen şirketimizde NPI tip profillerde 500 mm, NPU tip profillerde 500 mm, NPU tip profillerde 500 mm, IPE tip profillerde 500 mm, IPE tip profillerde 500 mm genişliğe kadar üretimi yayılmaktadır. Haien 20-80 mm kalınıkta ve 200-405 mm genişlikte platina üretimi de gerçekleştirilen tesiste devam eden yatırımımızla birlikte 520 mm platina üretimi yayılarak kullanıcıların hizmetine sunulacaktır.

Our company is the only manufacturer of rall and heavy profile in Turkey and regional countries. Our Rail-Profile Rolling Mill which has the capacity of 450,000 tons / year, has been commissioned for this purpose in 2007.

tons / year, has been commissioned for this purpose in 2007.

At our facility equipped with advanced technology, operators with at least level 2 user certificates are employed in addition to the 12-75 m (46-50 kg / m) rais in international standards, R350 HT hardened rails and 60Rt, 60R2 and 59R2 corrugated rails are produced at the facility Our company, which also has the HPQ certificate owned by only few rail manufacturers in Europe, has a modern test center consists of test units for laser where geometrical controls are performed in Ray-Profile Rolling Mill, eddy currents where surface controls are made, and ultrasonic test units for internal controls. In this facility, where the shape and size controls are made with the online laser system, we are working with 98% quality ratio by carrying out the production with an accuracy of one percent of the millimeter.


accuracy of one percent of the millimeter. Our company is the only producer of our country in heavy profile production. Our company, where profile production in IPE, NPI, NPU, HEA and HEB types, equal and unequal angles, thick rounds up to ½ 20 mm and mine poles are produced, manufactures up to 500 mm NPI type profiles, 400 mm NPI type profiles, 500 mm PE type profiles, and 550 mm PE type profiles. With the ongoing investment at the facility, where 20-80 mm thick and 200-405 mm wide platina is also produced. 520 mm platina will be produced and offered to the users.

20

Demiryolu Rayları Railway Rails

Ölçü, Tolerans ve Statik Parametreler

Size, Tolerance and Static Parameters

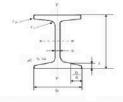
SERTLEŞTİRİLMİŞ RAYLAR Müştən falebire göre R350HT kalitesini ürelim yapıldalmektedir.

HAD HARDENED RAILS
R350HT quality can be produced

		(mm)			(min)			(rim)			(mm)		
Demiryolu Rayı Tipi Roilwox Roil Tyun			incontrie			TOTAL ST			MALE IN		Roden Forlow		(kg/me
		×	Ypod		H _{proft}	H _{proft} Y _{proft}		×	Ypon		×	Y _{profe}	
33 EL - EN13674-4 -	405/17		0,5	10000		1,55	160		3.0	0.0	+1	0	22722
33,47 leg/m	1314		1,0	105	-	1,0	591		0.5	11	-0		33,67
46 E2 - EN 13674-1 - 96 27 kg/m	165	* 0,fi	+ 0.5	134	+1,0	+ 1,5	62	+ 0,5	- 0.6	16	+10	+1.0	46,27
		-	- 1,12			(Amount & professor) (Co.)			- 0.5		+ 0,5	- 10	
49 E1 - EN 13674-1 49 39 kg/m	149:0	+ 0.5	- 0,5	125	* 1.0	+1,5	67	+ 0.5	- 0.5	- 14	- 0.5	- 0.5	49.39
			-1,0	-		1 -10	22.0		- 0.5		- 0.5		LUTT
HC49 - LNC 860 0 - 49.43 kg/m	149		+ 0,5			1.0	:67	1.0	0.5	36	- 0		49.43
			+ 0.5	-		+ 1.5			+ 0,6		+ 10	+10	
50 E4 - EN 19674-1 - 5017 list/m	162	+ 0,11	-10	125	+1.0	- 1.0	70	± 0.%	1 0,5	15	- 0.5	-05	50:17
AC 50 - UIC 860.0 - SOA6 kg/m	162		0.5	125		10	70		0.5	16	- 1,0		50.46
RSO PSO - GOST R		+ 0.6	+0.8									1 . c.s.	
51689-2000 - 51,80 ke/m	152	+ 0.5	+0.5	132	1.0(1)	± 1,0	72:	± 0,4	s. 0,5	16	1 0,4	-05	51,80
M E4 - EN 19674-1 -			+ 0.5			+ 1.5			+ 0.6		+ 10	+10	
54,31 kg/m	194	+ 0,5	- 1,67	125	+1.0	- 10	67	+ 9.5	- 0.5	- 16	- 0.1	105	54,31
UIC54 - UIC 860 0 -						of recommodery an				12.5	- 1	,c)	
54,43 kg/m	159		0,5	140		1,0	70		0,5	16	- 0,5		54.43
54 Et - Di 11674-1 -			+0.5		1000	+ 1.5			+.0,6	0.00	+10	+ 1,0	
54.77 kg/m	159	+ 0,5	+1,0	140	± 1.0	+1,0	70	+ 0,5	- 0,5	16	+ 0,5	- 0,5	54,77
60 E2 - EN 19674-1 -	172	4 0.6	+0.6	180	410	+ 1,5	12	4 9.5	+ 0,6	16.5	+ (0	+10	50.03
60,03 kg/m	172	1 0,0	-1,1	150	1.10	- 1,0	12	8 0,5	- 0.5	16.5	- 0,5	- 0.5	90.03
60 Et - EN 13674-1 -	122	+ 9.6	-0,6	150	+10	+ 1,55	22	+ 0.5	+ 0.6	16.5	+ (0	+10	60.21
6Q.21 kg/m	17.0	2.0,0	1,1	1100	- 1.0	+1,0	. 74.	1.03	+ 0,5	- Person	+ 0,5	- 0,5	00.21
AC 60 - UIC 8400 -	192		0.6	150		1.0	72	-	0.5	16.5	-+ t		6034
60,34 kg/m 59 R2 – EN 14811	*****					1.1					- 0	5	
59 R2 - EN MBT	100		1.5	180	- 4	(0)	9580		1.0	12	+1		18.20
finiti - 54,20 lig/m	1955			1000		1.0	2017			- "	- 0		
60 R1 - EN 14811 (Clubbs Ray Gracoust Rail) - 60.59 kg/m	180		1,5	180		1,0	76	1.5	1,03	12	- 1		60,59
60 R2 - EN 14871	e acore	+1.5		over.	s 1/0 - 3.0		to somewhat	+10		- COO	+ 1,0		99.76

l Profiller I Profiles

Boyut Standardi Dimension Standart TS EN 20024 Moşteri triebi ile diğer boyullar Orber dimensions accurang to customer's request

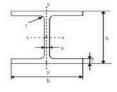

Chaite Standard

Quality Standart

TS EN 10025-1 / 2

Migten triefs lie dige kaliteler

Other qualities according to customer's required.


Anma Olcusu				Bo	yutlar ei	e Toleranster & Toleranse					Kesit Alani Section	Birim Kütle Myl Mass	Yuzey Alanı Surkicu				senteri lç ting Axisi			s.	5,
Nominal Size				VSSAW.			20				SPECIOI	ULM Miles	Noa.		к-ж			у-у			
7.77Cs		h		ь		4		t	F1.	r ₂	F (cm²)	G (kg/m)	5 (m²/m)	l, cm4	W,	l, cm	- Ly	W _v	i, em	cm'	cm
160	160	+20	74	± 1,5	6,3	-0,5/-1,0	9,5	+27-1	6,3	3,0	22,0	17,9	0.575	935	117	6,40	547	14.0	1.55	68	13,7
180	189	+ 2.0	82	+ 2,0	4.9	+05/-1,0	10,4	-2,57-1.5	6.9	4.3	27.9	21.9	0.640	1450	161	7,20	81.3	19.8	1,71	93,4	15.5
200	200	+ 2.0	90	+2.0	7.50	+07/-15	11.3	42,5/-1.5	7.5	4,5	33,4	26,2	0.709	2140	214	80	197	26.0	1,82	125	17.2
220	220	+ 3,0	9.8	+2,0	8,1	-07/-15	12,2	-2,5/-1,5	0.1	4,0	39,5	31,9	0,775	3060	278.	0.0	163	33,1	2,03	163	10,9
240	240	43.0	306	+ 2,5	8,7	+0.27-1,5	131,5	-2,57-1,5	0,7	5,2	463	36,2	0,684	4250	354	9,59	221	317	2,20	206	20,6
260	260	+30	113	+ 2,5	9.4	+0.77-1.5	14.1	-2.57-1.5	9.4	5.5	53.3	41.9	0.906	5740	443	10,4	288	510	2.33	257	22.3
280	280	+30	110	+ 2,5	10,1	+1,07-2,0	15,1	-2,5/-1,5	90,1	16,5	61,0	47,9	0.966	7590	542	11,1	364	612	2,45	216	24,0
300	300	+ 10	125	+3,5	30,0	+1,07-2,0	16,2	+2,57-1,5	10.8	6,5	69,0	54,3	1,018	9800	65.8	11,92	453	72,3	2,56	383	25.7
320	3120	4.30	1311	+3,0	11,5	+1,07-2,0	17,3	42,57-3,5	11,5	6,9	22,7	41,0	1,099	12510	7912	12.7	555	847	2,67	457	27/6
340	345	130	137	13.0	12,2	+1.87-2.0	10,3	-2,57-1,5	12.2	7,3	86.7	68,0	1.95	15790	923	13.5	674	96,4	2,60	540	291
360	360	+ 3.0	143	+ 3.0	13.0	+1,0/-7,0	19.5	-2,5/-1,5	13.0	7,8	97.0	76.1	1,21	19610	1090	14.2	0.10	114.0	2.90	538	307
ano	385	+ 3,0	149	+3,0	11,7	+1,07-2,0	20,5	+2,57-2	13,7	0,1	107,0	84,0	1,27	24010	1260	15,0	975	101,0	3,02	741	32,4
400	400	+ 7,0	16.5	+3,0	18,4	+1,07-2,0	21,4	+2,5/-2	16,6	8,5	118,0	92,4	1,39	29210	1160	15,7	7160	149,0	3,38	.857	341
450	450	+40	170	43,0	16,21	+1,0/-2.0	24,3	-2,57-2	16,2	9,7	147.0	115,0	1/686	45880	2040	12.9	1730	203,0	3,42	200	303
500	500	140	185	13,0	38,0	+1,07-2,0	27.0	-2,57-2	18,0	10.8	179.0	161,0	1,63	68740	2750	19,6	2460	268,0	3,72	1620	424

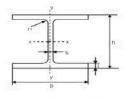
22

HEA Profiller HEA Profiles

Boyut Standardi Dimension Standart TS EN 10034

Kalite Standardi Quality Standart TS EN 10025-1 / 2

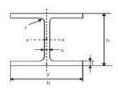
unma Ölçüsü				Boysitlar vi	e Tallerans & Tolorar	star oces				Kesit Alam Socion	Birim Kode Unit	Yazwy Alam Sur- focus				ametrele	8		5,	S,
Verninar Size											Mass	Area		жж		Vi	у-у			
	h				3			t	7	(cm²)	G (kg/m)	S (m²/m)	cm,	w.	em	cm*	W cmb	i cm	ew.	cm
120	114	+3/-2	120	147-2	5,0	107	8.0	+2/-1	12.0	25,3	19.9	0,677	606	105	4,99	231	38,5	3,02	59,7	10.1
140	193	-37-2	140	4/-2	5.5	10.7	0.5	+27-1	9.0	31,4	247	0.794	10:30	155	5,73	389	55.6	3.52	86.7	21.9
160	853	+3/-2	160	+4/-2	6,0	+0,7	9,0	+2/-1	15,0	30,0	30,6	0,906	1670	220	6,57	616	76,9	3,96	123,0	13,6
160	171	+37-2	100	+4/-3	6,0	+0,7	9,5	+3/-1	15,0	45,2	35,5	1,02	2510	294	7,45	931	103,0	4,52	163,0	15.5
200	190	147-2	200	147-2	6.5	+0.7	10.0	-2,57-1,5	11.0	53,8	42.3	334	3600	302	11,211	1340	194,0	4,98	28,0	172
220	210	+47-2	220	-47-4	7,0	41.0	11.0	+2,57-1,5	19,0	64,3	50,5	1,26	5410	515	9.17	1950	179.0	5,51	264,0	19:0
240	230	+4/-2	240	14/-4	7.5	+1.0	12.0	-2.57-1.5	21,0	76,8	60.3	1,37	7660	675	10.10	2770	2360	8,00	372,0	205
260	250	+47-2	250	-4/-4	7.5	11.0	12.5	+2.5/-1.5	74.0	86.8	66.2	1,48	10450	836	11,0	3670	282.0	6.50	460.0	22.7
280	370	+4/-2	280	+4/-4	8,0	+1,0	19,0	+2,57-1,5	34,0	97,3	76,4	1,00	(3670	10/0	11,9	4760	340,0	7,00	556,0	246
200	290	+47-2	300	4/4	0,5	47,0	16,00	+2,57-1,5	27,0	112,0	80,3	1,72	10200	1260	12,7	6310	4210	2,49	692,0	26,4
320	⊒10	+4/-2	300	-47-4	9	47,0	5,5	-2,57-1,5	22,0	124.0	97,6	1,76	22930	1480	12,6	5990	466,0	7,49	M14.0	29.2
340	330	+47-2	300	-4/-4	9.5	41,0	96,5	-2.57-1.5	27,0	193.0	105.0	1,79	27690	1680	54,4	7440	496,0	7,46	925.0	29.9
160	850	+67-2	300	+47-4	10	+1,5	17,6	+2,57-1,5	27,0	163,0	112,03	1,88	13090	18190	16,3	7890	526,0	7,41	1010,0	317
400	390	147-2	300	4/-4	11	41,5	19	+2,57-1,5	27/0	159,0	125,0	1(91	45070	2210	16,0	8560	5710	2,24	1290,0	35.2
450	440	+5/-3	300	-4/-4	11,5	x1,5	21	-2,57-2.0	27,6	178,0	140,0	2:01	63720	2900	16,9	9470	6310	7,29	1610,0	39,6
500	490	-457-3	300	-4/-4	12	14.5	23	<2.57/2.0	22.0	1981-0	155.0	2,11	86970	3550	21.0	10300	6910	7.24	1970.0	44.1


Asalet martenti föttmend id ävecta.
Kasti modali Sinton modalion.
Kasti modali Sinton modalion.
Kasti modali Sinton modalion.
Kasti modali Sinton modalion.
Kasti modali Sinton modalion.
Kasti procedetti föt obtologi elpine eksemlerine görsedri Jitolonia od gentrian Sistemani is omid gristerining ille rodorianti rensi.
Daman va çalman. meskaslari arasındaki masale Dittorian betream centrar af comprension ericli Intelion.
Leplam yüsey sianları ile statik değorler çüsilgede görlerien boyutlara göre hasaplanmıştır. Sectori incight surface arası sind station.

HEB Profiller HEB Profiles

Boyut Standardi Dimension Standari TS EN 10034

Kalite Standardi Quality Standart TS EN 10025-17-2


Anma Olgusu				Boyu	tlar ve Tol	eranslar Morance				Keek Alam Section	Birim Kütle Unit Mass	Yüzey Alanı Surface Area	Static Personnetreler Static Personnetres					
Nominal Size HEB											746,203	Incess.	E .	*-*		у-у		
			1	ь	1			t	*	F (cm²)	(kg/m)	5 (m²/m)	em!	W,	i, cm	W _y cm²	3	
120	130	+3/-3	120	+47-3	65	+0,7	11/0	+2,5/-1,5	0,0	34,0	26,7	0,686	864	14.6	5,04	53,9	3,5	
140	140	-37-2	140	+47-2	7.0	67,0	12,0	-2,57-1,5	12,0	43,0	23,7	0.805	1510	2%	5,93	79,5	3.5	
160	160	-3/-2	160	+17-2	6,0	0.74	13.0	+2,5/-1,5	15,0	54,3	42.6	0,918	2490	391	6,79	111,0	47	
180	180	+39-2	100	-4/-2	8.5	:1.0	14,0	+2.5/-1.5	5.0	65.3	51,2	1.04	3830	426	7,66	151.0	4,	
200	200	+07-2	200	+1/-2	9,0	+5,0	15,0	+2,5/-1,5	18,0	78,1	61,3	1,65	5700	570	9,54	200,0	15,0	
220	220	-67-2	226	-47-4	9,5	41.0	16.0	+2,57-1,5	19,0	91,0	71,5	1,27	8090	236	9,43	258,0	5.	
240	240	-47-2	240	+4/-4	10.0	:1.5	17/0	-2,5/-1,5	31.0	106,0	69,2	1,38	11260	939	10.3	327.0	6.0	
260	260	+4/-2	260	+4/~4	10.0	+1.5	17.5	+2.5/-1.5	24.0	118.0	93.0	1.50	14920	1150	11,2	395.0	6.	
280	390	+6/-2	286	+67-6	10,5	+1.5	18,0	+2,5/-1,5	34,0	121,0	103,0	1,62	19.270	1380	12,5	421,0	7,1	
300	100	-47-2	300	+45-4	11,0	47,5	19,0	~2,57-1,5	27,0	149,0	117,0	1,72	25170	1680	13,0	571,0	7,5	
320	326	-4/-2	300	+47-4	11.5	+1.5	205	-2,57-2,0	27,0	161,0	127,0	1.77	30620	1930	13.8	615,0	- 23	
340	340	-47-2	300	+4/-4	12:	+1.5	215	-2,51-2,0	22:0	171.0	134.0	1,61	36660	2160	14,6	646.0	2,1	
360	360	+4/-2	300	-17-4	12,5	+1,5	22,5	+2,5/-2,0	77,0	181,0	142,0	1,85	43190	2400	15,5	676,0	7,1	
400	400	+65-3	100	+1/-4	11,5	+1.5	31	+2,5/-3,0	17,0	1985,0	155,0	1,98	57680	311110	17,1	321,0	7,4	
450	450	+57-38	300	+47-4	16	+1.5	26	-2,57-2,0	17/0	2785/6	171,0	2,03	79890	3550	19.1	781,0	2,	
500	500	+57-3	300	-4/-4	14.5	11.5	28	-2,5/-2,0	27,0	239,0	187,0	2.9	107200	4250	212	842,0	7,2	

24

HEM Profiller - Geniş I Profiller / Takviyeli HEM Profiles - Wide I Profiles / Reinforced

Boyut Standardi Dimension Standart TS EN 10034

Kalite Standardı Quality Standart TS EN 10025-1 / 2

						Toleransi				Kesit Alani	Birim Kütle Linit Moss	Yüzey Alanı Surface Area				rametrele acarrieties			5	s
Anma Olçusu Nominal Sue				CAUTICS.	ruscaras as	roseron	cera			Section	Cryt wices	Statistics wheel		ж-ж			y.y.	d.		100
HEM		b:		to				t	e:	(cm²)	G (kg/m)	(m ² /m)	t, emi	w,	i,	l, cm²	W,	cm	cm ³	sm
120	140	+3/-3	136	+4/-2	12,5	+1,5	21,6	+2,57-2,CI	12,0	66,4	533	0,738	2020	286	5,51	769	113	3,35	175	11,5
140	160	+37-2	146	+67-2	13,0	e1,5	22,0	*2,57-2,0	12,0	80,5	63.2	0,057	3290	411	0,30	1140	16.7	3,77	247	13,3
160	90	+3/-2	166	+47-2	14.0	:1.5	23.0	+2.5/-2.6	15.0	971	76.2	0,970	5100	566	7.25	1760	212	4.26	137	15,1
160	200	+0/-2	ins.	+6/-3	14,5	#1,5	34,0	+3,57-2,0	15,0	113,0	88,9	1,09	7480	748	8,5)	2580	177	4,77	442	16,9
200	220	+4/-2	206	+4/-2	15.0	«1.S	35.0	+2,57-2,0	18,0	1310	103,0	1,20	106-40	967	9,00	3650	354	5,27	168	10,2
229	140	+4/-2	226	-4/-4	15.5	41.5	26.0	+257-2,0	18,0	149.0	117(3)	1,32	146000	1220	9,89	5010	444	8.79	790	20,6
240	270	+4/-2	246	+4/-4	18.0	=1.5	32.0	-2,5/-2,5	21,0	200.0	157.0	1,46	74290	1800	11,00	8150	657	6.39	1060	12.9
260	290	14/-2	268	-1/-4	10,0	aT,S	32,5	+2,5/-2,5	24,0	220,0	172,0	157	31310	2160	11,90	10450	700	6.90	1260	24,0
260	310	+4/-2	280	147-4	16.5	:15	13.0	+2,57-2,5	24.0	240,0	189.0	1.69	39550	2550	12,80	13160	914	7,40	1480	26.7
300	140	+0.7-2	300	+4.5-A	21,0	+20	19,0	+3,57+3,5	27,0	303,0	238,0	1,63	59200	3480	14,00	19400	1150	8.00	2040	19,0

Adalast normonal Account of Insertal

(Real modulus Section modulus)

(Adalast purpoplier (last collegal) eigens elementance generally idealment of jurisoide Schlaurige # and ty stemating the visit cent sens)

(Adalast purpoplier (last collegal) eigens elementance generally idealment of jurisoide Schlaurige # and ty stemating the visit cent sens)

(Bearna ve Column embodulus association modulus formation production of compression and remains

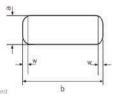
(Replan visites) adalast file statis despirator colorigade generation boyuntare gene bestationers, register print and production of colorigade generation boyuntare gene bestationers

(Replan visites) adalast file statis despirator colorigade generation boyuntare gene bestationers

(Replan visites) adalast file statis despirator colorigade generation boyuntare gene bestationers

(Replan visites) adalast file statis despirator colorigade generation boyuntare gene bestationers

(Replan visites) adalast file statis despirator colorigade generation boyuntare generation of the statis despirator colorigade generation boyuntare generations.


TITAN SON

Platinalar **Platinas**

Boyut Standardı Dimension Standart DIN 59200

Kalite Standardı

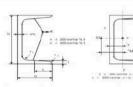
Quality Standart
EN 10025-1/2
Müşteri talebi ile diğer kaliteler
Other qualitiles occording to customer's request

	Et Kalınlığı Thickness	Sapria Deĝerleri Talerances					
≥ mm	≤ mm.	A Sinf Class A	B Sinf Class B				
20	26	+ 0,9	+1,1				
20	25	- 0,5	- 0,3				
25	20	+ 10	+1,3				
Д	30	- 0,6	- 0,3				
30	40	(5001)	+1,5				
.40		- 0,7	- 0,3				
022		+1,1	+1,7				
40	50	- 0,9	E,0 -				
		+ 1,2	+ 1,9				
50	60	- 1,0	- 0,3				
	**	+ 16	+ 2,3				
60	80	- 10	- 0,3				
		+ 3,0	+ 3,7				
80		- 10	- 0,3				

Nominal Kalınlık Nominal Thickness	Max W,	Deviation
	Normal Sapma Normal Deviation	Daraltılmış Sapma Reduced Deviction
s 13	2,0	0,5
13 - 18	3,0	0,75
> 18	3,5	0,9

Maks. W. Sapmasi

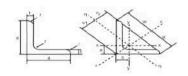
	Genişlik əl Wichh	Maksimum Kalınlık Değişimi Məximum Thickress Vociation
mm	s mm	ACCURATE STATES AND INCIDENT
150	500	0,5


 ^{*}Tolerans smill, sipariş aşamasında belirtilmelidir
 *The tolerance class must be specified or the ordering stage.

NPU Profiller NPU Profiles

Boyut Standardi Dimension Standart TS EN 10279

Kalite Standardi Quality Standart TS EN 10025-1 / 2


Anma Octoid								erans				Kesit Alam	Birim Kütle	Yuzey Alene			rne Eks r Berod						yvy Ekseni Uzakligi Axa Zistorice	
Nominal Sale (NPU)				D	WYDDY	SHESTS	35 10	horars	cars			Section	Limit Adams	Surface Area		K-36			у-у		S, o	S, "		K. 7
(ar-u)	1 9	h.	T	- 1		1.8	63		9	\mathbf{r}_k	1,	(cm²)	(kg/m)	(m:/m)	j.	cm'	cm	cm.	W,	c'm	200	1953000	erh.	O+1
120	120	. 20	9	5	2.0	7,0	+ 0.5	9.0	-0,5	1.0	45	17,0	13,4	0,434	364	60,7	4.62	43.2	11,1	1,59	36,3	10,0	1,60	3.03
140	140	. 2.	9 6	0	2.0	7,0	± 0,5	10,0	-0,5	10,0	5,0	204	16.0	0.489	605	86,4	5,45	62,7	14,0	1,75	50,4	11.0	175	3039
160	160	+ 20	9 6	5	2.0	7,5	+ 0,5	10,5	-1	10,5	2.5	24,0	10.0	0,546	925	316	6,21	.05;3	101,31	1,09	68,0	19,3	3,04	3.56
180	100	+ 23	9 7	0	2,0	0,0	+ 0,5	910	-1	11,0	55	28,0	12,0	0,611	1350	150	6,95	194	22,4	2,02	09,6	15,1	192	3,75
200	200	. 20	9 7	5	2.0	0,5	+ 0,5	115	-1	11,5	0.0	322	25,3	0.661	1910	191	7.70	140	27,0	2,14	184	96,0	201	3.94
220	220	+ 3.0	9 11	0	2.0	9.0	+ 0,5	12.5	-1	10,5	:65	37,4	29,4	0,718	2590	245	8,48	197	33.6	2,10	146	19,5	234	420
240	140	. 30	9	5	2.0	9,6	+ 0,5	13,0	-1	11.0	65.	42.3	13,2	0,775	3600	300	9,22	240	39.6	2,42	179	20,1	2,23	4.30
260	160	. 30	9	0	2.0	10,0	. 0,5	14.0	-1	100	7.0	40.4	37,9	0,834	4920	321	9,99	317	477	2,56	221	25,8	2.16	4.66
280	200	. 30	9	5.	2,0	10,0	+ 0,5	15,0	-1	15,0	25	533	41,0	0.890	6280	440	10,9	399	57,2	2,74	256	23,6	2.53	5.02
900	100	+ 30	9 10	0	2.0	10,0	# 0,5	16,0	-1,5	16,0	0.0	50,0	46,2	9,950	8930	535	15,7	495	67,0	2,90	316	25,4	2,70	3,41
320	320	+ 30	9 10	10	2.0	14,0	+ 0,7	17,5	-1,5	17,5	8,25	75,8	59,5	0,982	10070	679	12,1	597	806	2,01	413	26,3	2,60	4.02
350	350	. 30	9 10	0	2.0	14,0	a 0,7	16,0	-1,5	16,0	0.0	77,3	60,6	1,06	12040	734	12,9	570	75,0	2,72	459	20,6	240	445
380	380	. 30	9 K	12	2.5	131,5	+ 0,7	16,0	-1,5	16,0	8.0	804	63,1	tn	15760	829	14,0	615	78.7	2,77	507	31,1	2:318	456
400	100	+ 33	0 17	0	2.5	14.0	+ 0.7	18,0	-1.5	18,0	9.0	915	71.0	130	20350	1020	16.9	846	102	3,04	610	33.9	265	5.11

28

Eşkenar Köşebentler Equal Angels (Leq)

Boyut Standardi Dimension Standart EN 10056

Kalite Standardı Quality Standart EN 10025-1 / 2

		Boyuti	ar ve	Tolerani	star	Kesit Alam	Brim Kotle	Aprile	Merkezinden	Uzgichik		3	Eksenlerir ection Spec	Kesit Öz offications	of Asso	e si		
Anma Digusu Nominal Jule (Ling)		Dimeru	ons .	S. Tokecov	nces	Section	Unit Moss	Cistance	Enam Center	of Gravity		x-x = y-y		u	u.		V-V	
		à		t		(cm²)	G (kg/m)	c, = c,	e,	e,	(, =), (m)	1, × F,	2" = 3"	ew.	em.	cma.	r,	Z,
120×120×10	120	s 3.0	10	+ 6,26	13.0	23,2	18.2	3,31	1,40	4,69	313	3,67	35.0	497	4,63	129	2,36	27,5
120×120×12	120	+ 3.0	12	s 100	13,0	27,6	21,6	3,40	8.49	4,00	366	3,65	42.7	584	4,60	152	2,35	31,6
130×190×12	100	+ 3,0	12.	s 100	14,0	340,0	23,6	3,64	9,19	5.95	472	3,97	504	750	5,00	1944	2,54	17,7
150×150×10	50	= X,O	10	+ 0,75	16,0	29,1	21.0	4,03	10,60	5.71	624	4,62	56.9	990	5,82	258	2,97	45,1
150×150×12	150	+ 3/0	02	+ 100	16,0	34.0	27,3	4,12	30,60	5,80	-297	4,60	67.7	1170	5,40	103	2,95	52,0
150×150×15	50	+3,0	15	+ 100	16,0	13.0	33,0	4,25	10.60	6.01	996	4,57	03.5	1430	5,76	170	2,93	91.6
160×160×15	160	±4.0	-	+ 100	17,0	46,1	36,2	4.49	11,300	6.36	1100	4.88	95.6	1750	6,8	4539	3,14	71.3
180×180×16	180	+ 4,0	16	+ 120	100,00	35,4	49,5	5,02	12,760	331	1680	5.91	130,0	2690	9,56	679	3,50	95.5
180×160×16	wo	+4.0	10	+ 120	167,02	61.9	49.6	5.10	12,76	7,22	1876	5.49	145,0	2960	6,92	78688	3,52	106,6
200×200×16	200	± 4.0	10:	± 120	18.0	61.0	48,5	5.52	14.10	7.01	2340	6,16	162,0	3720	2,76	960	3,94	123,0
200×200×18	200	×4,0	100	# 120	16,0	69,1	54,3	5,60	14,10	292	2600	6,13	191,0	4150	7,76	1050	3,90	193,0
200×200×20	200	0,6 *	20	+ 120	10.0	76.3	50,0	5,68	14,10	8.04	2850	6,11	199,0	4530	7,70	1170	3,92	M6,0
200×200×24	200	= 4,0	24	1 120	10,0	90,6	79,1	5,64	16,10	0.26	1330	6,06	235,0	5280	7,64	1300	3,90	367,0

Atalet moment information investor
 Kesh maddld Section regulate
 New york participal (New York Section)
 New York Property (New York Section)

Çeşitkenar Köşebentler Unequal Angels (Luneq)

Boyut Standardi Dimension Standart EN 10056

Kalite Standardi Quality Standart EN 10025-1 / 2

Anma Ölçüsü Atırısını' Size		Boys Dimen	etlar sion	ve Tal	Fer an	alar onces		Kesit Alam Section	Birim Kütle Unit Mais	Age	lik Merke	zinden l Center o	traklik f Gravity			Eks Section	ersteri vi Spe	n Kes	it Oz	of A	eri Vitera			Eksenlerinin Egim Slope of Axes
(Luned)															M-1			y-y		ü	-id		·¥	
				b		t	74	F (cm²)	(kg/m)	en em	em em	e, em	c, cm	cm*	r.	ž,	em.	r cm	z,	cm*	¢.	cm*	r em	Tan s
120×80×8	120	63.0	80	#2D	0	a D.75	79	15.5	12,2	3,83	1,87	0.23	4.23	226	3,92	27,6	80.1	2,28	10.2	250	4.10	46.5	1,74	0.437
120×88×10	110	=1.0	HO	*ZD	10	+ 0.75	70	192,1	5.0	9,92	1,95	11,19	4,25	278	3.88	24,1	983	2,28	15,2	317	4,07	56,8	1,72	(0,436
120×00×12	100	+1.0	100	+20	12	+10	. 19	32,7	17:0	4.00	2,03	0.15	4.20	323	35,86	40.4	254	2.24	19,1	371	4,04	66,7	1,71	0.631
125 x 75 x 8	125	43.0	326	420	18	+ 0.71	76	15,5	12,2	0.14	1,60	0,44	4,20	241	4,00	29,6	67,6	2,00	11,6	274	4,21	40,9	1,63	0,360
125×75×10	12.5	43.63	755	+3.0	10	+ 0.75	- 15	19.1	15,0	4,23	1,755	0,39	4,17	301	3.97	36,5	82,1	2,07	31.3	314	4,10	49.9	1,657	0.357
125×75×12	125	43 D	7%	+20	12	+10	. 19	22.7	17,0	4.31	1,04	6.33	4.15	354	3,95	43.2	95,5	7,05	20,59	391	4.75	50,5	1,61	0.354
135×65×8	135	0.64	105	+20	- 0.	4.0.71	.11	15,5	12,2	4.76	1,34	8,79	3,95	291	4,34	33,4	45.2	1,71	8.75	307	4,45	29,4	1,30	0.245
135±65±10	105	43.0	665	+30	10	+ 0.75	- 12	10,1	15,0	4,00	1,42	8,72	3,91	356	4,30	45,1	54,7	1,619	10.6	375	4,43	35,9	1,30	0.245
150×75×9	150	43.0	75	+20	9	± 0.75	12	19.6	15,4	5,26	1,57	9,82	4.50	455	4,02	46.7	77.9	1,99	19,1	482	4.96	50,2	1,60	0.261
150×75×10	150	e3.0	75.	+20	10	a D.75	12	31,7	17,0	5.21	1,61	9,70	4,48	501	4,80	53,6	85,6	199	11,5	531	4,15	58.1	1,60	0,261
150×75×12	tto	43.0	75.	aZD.	12	+10	12	35,7	10,3	5,80	1,69	9,72	4.44	588	4,76	61,1	99,6	1,97	17,3	623	4,92	04,7	1,50	0,258
15/0×75×15	150	43.0	75	120	15	+10	12	211,7	24.0	5,52	1,91	9,63	4.40	713	4.75	75,3	119	194	21,0	753	4,80	78.6	1,58	0,253
150x90x10	110	43.0	90	+20	10	+ 0.75	12	13,2	18,2	5,00	2,04	10,1	5,03	533	4,80	53,3	100	2,91	21,0	1991	5,05	8,88	1,95	0,360
15G×90×12	150	13.0	50	+2.0	120	+10	12	32.8	23,6	5,08	2,12	10,1	5.00	627	4.77	63.3	121	2,49	24,8	694	5,62	1014	1,94	0.356
150±90×15	110	12.0	507	+20	15.	+10	12	33,9	26.6	5.21	2,33	0,96	4,98	261	4,74	27,5	206	2,46	30,4	194.1	4,98	120	1,93	0,354
(56×100×10	110	+30	100	+20	10	4 10 75	12	24,2	19,0	4.01	2,14	10.3	5,19	553	4,79	54,2	199	2,03	25,9	617	5,13	114	2,17	0,636
150×100×12	150	43.0	100	+20	12	+10	12	20.7	22.5	4,89	2,42	10.2	5.78	651	4,76	64.4	233	1,85	30,7	749	5,11	134	2,16	0.436
200×100×10	200	±4.0	100	+2.0	10	+ 13.75	Ti	19,2	13.0	6,93	2.01	13.2	6,05	1220	6,46	92,2	210	2,68	25,3	1290	6,55	135	2,15	0.262
200×100×12	200	#4 O	100	a2.0	12	+ 1:0	75	34,6	27,3	7,03	2,10	13;1	6,00	1440	6,43	111	247	2,67	31,3	1530	6,63	150	2,94	0,262
200×100×15	200	+4.0	100	+20	15	+10	15	43.0	39,75	236	5755	13.0	5,84	1258	6.4	107	299	2,64	30.35	1004	4,59	993	2,12	0,260
200x150x12	290	e4-D	150	4,9.0	12	a 1.0	75	40,6	12,0	6,08	3,61	13.9	7,14	1650	8,34	. 119	HOX	4,44	70,5	2030	7,04	430.	1,25	0,552
200×150×15	200	+4.0	110	+3D	125	×10	15	10.5	39.6	6.21	3.73	13.9	7.33	2022	6.33	147	979	440	05.9	2476	7.00	1526	X.23	0.551

Atalet momenti Morrore of mentas
 Kest modulo Sector medicin
 Mestyon yangapi (X,VU ve V elecenterdir) Radius of gr

30

GI ve TH Maden Direkleri GI and TH Sections for Mine Support

Boyut Standardi Dimension Standart DIN 21541

Kalite Standardı

					Boyutlar v	e Tolorans	har				Egim	Keak Alare Section	Birim Kutle			Statilic Pa Floric Flor			
Kesiti Section GI					A. 100 P.		THE .				200/4/20	344,000	AND AND AND AND AND AND AND AND AND AND		(K-W			к-у	
GI	m	i m.		to um	n	e eve.		m.	71	12	*	F (cm²)	(leg/m)	L, cm*	w, em ³	i, em	t.	w,	i, em
GI 110	110	120	84	11,5	10,0	10,6	140	-1,0	140	5.0	33,0	31,1	245	570	103	4,28	103	24,5	1,82
GI 140	140	120	110	a1,5	12,0	×0,7	19,0	-1,5	17.0	8,0	33,0	31,0	416	1568	227	5,47	306	57,3	2,44

Boyut Standardi Dimension Standart DIN 21530

Kalite Standardı Quality Standart EN 10025

Kesiti			Be Diri	oyutlar ve Toler nerosons & Tole	ACM CREE			Kesit Alam Section	Birim Kutle Unit Mass		Statik Pa Static Pe	rameter	
Section										×	-×	ж-	y
		H		B mm	to mm	hi	1-2	(cm²)	G (kg/m)	w _s	L, cm	w.	L,
70/29	124,0	120	150	a1,5	44/3	23.0	15,0	37,0	29,0	94	616	103	775

IPE Profiller - Orta Geniş I Profiller / Takviyeli IPE Profiles - Mid Wide I Profiles / Reinforced

Boyut Standardi Dimension Standart TS EN 10034

Kalite Standardı Quality Standart TS EN 10025-1 / 2

Anma Ölcüsü				yutlar vi					Kesit Alani Section	Birim Klittle Unit Moss	Yazey Alam Surface Area				rametrider morneters			Sx	Sy
Norminal Size (NPE)										G			2-8			Y-7			
(0.2)		Pr		b		8:		,	(cm²)	(kg/m)	(m²/m)	i, emi	W,	lx om	l, em²	W,	fy cm	≤m ^b	CIT
IPE A 120	112.6	137-2	54	-6/-1	3.6	+97	5,7 (1,5/-0,5	7.0	11,02	0.7	9.472	257	44	4.02		7,00 8,45	1,42		
IPE 120		+3/-2	54	+47-1	4,6	+ 0.7	6,3 +1,57-0,5	7.0	13,30	10,4	0,472	310	13	4,90	32.4 37.7	8,65		30.4	10,5
IPE A 140	137,6	+3/-2	734	+ff/-f	3.6	+ 0,7	5.6 -1.57-0.1	7,0	13.39	10.5	0,547	435	77.3	5.70	36,4	12.3	1,65	7.	
IPE 140	140		73	447-1	4.7	+ 0.7	1.9 +2,0/1.0	7.0	16.40	12.9	0,551	541			44.9	12,3	1.65	442	12
IPE.A160	157	+3/-2	82	4401	4.0	2.0,7	5.9 +1.5/-0.1	9:0	16,18	12.7	0.679	689	109	6.33	54.4	13.3	1.63	+	
IFE Y60					5.0	1.0.7	7.4 +2,07-1.0	9.0	26,10	15,8	0.623	869		6.58			7,64	61.9	34
IFE.A180	122	137.2	91	147-1	4.3	1.0.7	9,5 +2,07-1.0	9.0	19,58	15.4	0.694	1063.	120	7.17	61.9	16.0	2.05		
IFE 'BO	100	137-2	91	1-549-	5.5	+0,7	1.0 -2.07-10		23,90	10,0	0,698	13.20	116	7.42	101	22,2	2,05	113,2	. 10
PEA 200	197	+4/-2	100	46.1	4.5	40,2	7.0 -2.0/-1.0	12,0	21.47	10.4	0,764	15:91	162	0.23	112	23,4	2,23		
RE 500	300	+87-3	100	-8.7-1	5.6	+0.7	11,55 +2,07-1,0		28,50	32,6	0,268	19:40	394	11,26	182	216,5	2,24	110	12
IPE.A. 220	277	147-2	110	4//1	5.0	4.0.7	1.7 +2.07-1.0	12.0	20,26	22.2	0.043	2317	252	9,05	171	31.2	2.46	143	
IPE 220	320	+67-3			5,9	+ 0.7	9,2 +2,0/-1,0		33,40	36,2	0,848		25.2	9.11					19
IPE A 240	240	+4/-2	20	+4/-2	6.3	+ 0.7	18 -20/-10		33.31	36.2	0.918	3290	378 324	9,94	200	47.3	2.6B	163	21
IPE A 270	267	+47-2				1.07				30.7	1037	4917					3.02	183	- 2
IFE 270	270	147-2	135	+4/-2	5.5	107	102 -20/10	10.0	39.20 45.90	36.1	1040	5790	368	11.2	356 420	53.0	3.02	242	23
#E.A.300	297	14/-2	150	:47.2		+0.7			46.50	36.5	1,156	2173	403		520	692	3.34	646	- 63
IFE 200	300	147.2	150	147-2	7.1	+ 1.0	9.2 -25/-15	351,01	53.00	12,2	1.16	8360	15.7	12.5	604	80.5	3.15	314	- 24
IPE A 3310	327	+47-2	360	+4/-2	6.5	+0.7	10 +25/-15	181.0	54.70	43.0	1.25	10230	626	11.7	685	85.6	3.54	-77	-
IPE 330	330	147-2	950	197.2	7.5	+1.0	11,5 -2,5/-1,1	58.0	62.60	491	1,20	10770	7101	13,7	706	96.5	3,55	402	215
PEA 350	257,6	+4/-2	170	+4/-2	6.6	4.0.7	B.S -23/ 13		6400	10,2	1,35	9/6/2D	832	0,1	944	111.	2.84		-
PE 360	360	+4.6-3	170	+47-2	8.0	+ 1.0	9.7 -25/45	98.0	72.70	571	1,35	16220	904	15.0	10-00	123	3,76	510	311
PE-A-400	397	+47-2	180	+47-2	7.0	+1.0	12 +2.5/ (1.1		73.10	57.4	1,40	20290	1022		tidal	190	4.00		
IPE 400	400	+4/-2	180.	+4/-2	8.6	+1.0	8.5 +25/-15	21.0	84.50	563	1.47	23130	1160	16.5	1320	146	3.95	654	35
IPE A 450	447	+57-3		14/-2	7.6	+ 1.0	13.1 +2.5/-1.5	210	85.60	672	1.60	29760	13.31	18.7	1502	158	4.19		
IFE 450	450	157-3	190	147-2	9.4	1.1.0	14.6 12.57.13	21.0	98.80	27.0	3.67	33740	1500		1560			855	315
#E.A.500	497	157-3	200	+47-2	13.4	1.1.0	34.5 <2.57.1.5	21.0	901.0	79.4 90.7	1.74	42930	3728	20.6	19.39	194	4.38		
FE 500	500	+57.3	200	47.2	10.2	1.15	16.0 -2.57-1,1	21.0	-116.C		1,24	48200	19,30	20.4	2140	294	4.31	1100	-43
PE-A 550	547	+87-3	210	+4/-2	9,0	+ 1,0	15,7 +2,5/-1,1	24.0	117,0	921	7,500	59980	2193	21,6	2432	232	4,55		
PE 550	550	+5/-3.	210	-4/-2	13.5	4.1,5	17,2 -257-1,5	24.0	134,0	106.6	1,00	67120	2440	22,4	2570	254	4,45	1390	44
PE A 600		+6.7-76		#47-44	9,0	+ 1,0	17,5 +2,5/-1,5	24.0	197,0	108.0	2,61	82920	3776	24.6	3116	283	4,77		
PE 600	600	+15.7-38	220	+4.7-4	12.0	+ 1.5	19.0 -2.57-1.1	24.0	156.0	920	2.01	92060	2070	24.3	3390	300	6.65	17/60	153

On the control of the

26

Paralel Flanşlı U Profiller (UPE / UAP) Parallel Flange U Profiles (UPE / UAP)

Boyut Standardi Dimension Standart TS EN 10279

Kalite Standardi Quality Standart TS EN 10025-17-2

						oleransla				Kesit Alary Section	Birim Kutle	Yüzey Alanı			ik Parar t/c Poro						Boyut	
Anma Ölçüsü Norvind Size (UPE)			4	America	ans &	Totarene	0.6			Section.	LIFET MORE	Surtaće Area		*·×			у-у		S. cm*	s, cm	Dimensions	
		Pa norra	L,	b mm		orn .		1000	mm	F (cm²)	G (kg/m)	(m/m)	div	w.	cm.	cm ^a	w,	i,			erin o	K _{to} cm
80	80	+ 2,0	50	+ 1,5	4.0	+ 0,50	7,0	-0,5	10	10.1	2.90	0,143	107	24,0	3,26	25.5	8,0	1,59	15,6	6,67	1.02	3,71
100	100	+ 2,0	55	+ 2,0	4.5	+ 0.50	7,5	-0,5	70	12.5	9,82	0,402	207	41,4	4,07	30,3	10.6	1,75	240	8,62	1.91	3.93
120	120	+ 2,0	60	€ 2,0	5.0	+ 0.50	0,0	-0.5	12	15,4	12,1	0,460	364	60,6	4,05	55,5	13,6	1,90	35,2	10,3	1,94	-612
140	160	+2,0	66	+ 2,0	5.0	+ 0,50	9,0	-0,5	12	18,4	14,5	0,520	600	85,6	5,71	78,6	10,2	2,07	49,4	12,1	2,17	454
160	160	+2,0	70	+ 2,0	5.5	+ 0.50	9,1	+0,5	528	21,7	17.0	0,579	911	704	5,40	107	22,6	3,33	65.0	13,9	2,27	4.78
100	180	# 2,0	25	€ 2,0	5.5	+ 0,50	10,5	-1.0	127	251	19.7	0,539	1350	150	7,34	144	28,6	2,29	86.5	15,7	2,47	5,19
200	200	+2,0	80	± 2,0	60	+ 0.50	11,0	-1.0	13	29.0	22,8	0,697	1910	191	6,11	167	345	2,54	110	17,4	256	5,41
220	220	+3,0	85	+ 2,0	6.5	+ 0.50	12,0	-1,0	338	33.9	26,6	0,754	2680	244	8,90	247	42,5	2,70	141	193	270	5.70
240	240	130	90	+ 2,0	20	+ 0.50	12.5	-1.0	15	365	30,2	0.013	3600	300	9,67	311	50,1	2,84	173	20,0	2.79	5,91
270	278	+ 3,0	95	x 2,0	7.5	+ 0.50	19,5	-1.0	15	44,8	95,2	0,892	5250	309	10,60	401	60,7	2,99	226	29,3	2,89	6,14
300	300	4.3,0	100	+ 2,0	95	* 0,50	15,0	-LO	- 10	56.6	444	0,968	7820	522	11,00	530	75,6	3,00	307	25,5	2.69	6.00
330	130	+3,0	105	+ 2,5	11.0	± 0,70	16.0	-1,5	10	678	52,2	1,043	11010	667	12,70	682	89,7	3,17	396	27,0	2.90	6,00
360	360	+ 3,0	110	+ 2,5	12,0	+ 0,70	17,0	-1,5	101	77,9	61.2	1,121	14830	824	13,60	844	105	3,29	491	30,2	2,97	6,12
400	400	+3.0	115	+ 2,5	12.5	* 0.70	18.0	-1,5	30	919	72.2	1,216	20960	1050	15,10	1050	123	3,17	631	33,2	2.96	6.04

Missaude adlien 1() televane, north, televane de sinetandrémete. (() linication le protest assigné administration (la linication de la linicat

Demiryolu Tekeri Üretim Tesisi Railway Wheel Production Plant

Demiryolu Tekeri Üretim Tesisimiz 200.000 adet/yil teker üretim kapasitesine sahiptir. Tesisimizde 700 mm den 1250 mm ye kadar olan çaplarda yuk vagonu, yolcu vagonu, YHT vagonu, hafif raylı sistem ve lokomotif tekerlerinin EN 13262+A2 standart-larına uygun olarak üretimi yapılmaktadır.

Demiryolu Tekeri Üretim Tesisimizde aşağı-daki tabloda belirtilen ürünler üretilebilmek-

- Yük Vagonu Tekeri . 920 mm
 Yolcu Vagonu Tekeri . 920 mm
 YHT Vagonu Tekeri . 920 mm
 Hafif Raylı Sistem Tekeri . 840 mm
 Lokomotif Tekeri . 1016 1100 mm

Üretim süreci kütük hazırlama, kütük isitma, dövme ve haddeleme, isil işlem, CNC iş-leme, test ve muayene adımlarından oluş-maktadır.

Demiryolu Tekeri Üretim Tesisin de üretileuemiryotu tekeri Uretim Tesisin de üretile-cek ürünlerin yarı mamulleri (kalın yuvarlak) istenen çelik kalitesinde (ER7) vakumla gaz giderme işleminden geçirilerek sürekli dö-küm yöntemiyle ulusal ve uluslararası kalite standartlarında üretilmektedir.

Üretimi yapılacak nihai mamullerin (Teker) özellikleri aşağıda belirtilmiştir.

Çap İspit Genişliği Göbek Uzunluğu

: 700 - 1250 mm : 80 - 175 mm : 110 - 350 mm

Tesisimizde ilk olarak Ø 920 mm çapın da yan sayfada teknik özellikleri verilen yük va-gonu tekerinin üretimi yapılmaktadır.

Our railway wheel production plant has capacity of 200.000 wheels in a year. Wheels for freight wagon, passenger car, high speed train, light rail system and locomotives with diameters from 700 mm to 1250 mm produce according to EN 13262+A2 standards.

Products in table below produce in our fa-

- Freight Wagon Wheel: 920 mm Passenger Wagon Wheel: 920 mm HST Wagon Wheel: 920 mm Light Rail System Wheel: 840 mm Locomotive Wheel: 1016 1100 mm

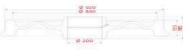
Production process contains billet prepara-tion, billet heating , forging and rolling , heat treatment , CNC machining , test and inspection.

Round bars for products of railway wheel production plant are produced with degas-sing with vacuum process and continious casting method with requested steel grade (ER7) in national and international quality standards.

Properties of finished products (wheels) will be produced are shown below.

 Çap
 : 700 - 1250 mm

 İspit Genişliği
 : 80 - 175 mm


 Göbek Uzunluğu
 : 110 - 350 mm

Specifications of firstly produced freight wagon wheels with 920 mm diameter are side of page.

34

Demiryolu Tekeri Railway Wheels

Kalite Standardı Quality Standart EN 13262-A2

BA 004

	V.					
Teker Tipi Wheel Type	Oron Product	Dış Çap Kapsamı Tread Diameter (mm)	İspit Genişliği Rim Width (mm)	Çelik Kalitesi Steel Grade	Standart Standard	Aks Yuku Axle Load (t)
BA 004	Yük Vagonu Freight Wagon	920	135	ER7	EN 13262+A2	23,5
BA 318	Yük Vagonu Freight Wagon	920	135	ER7	EN 13262-A2	23,5

1965 yılında ülkemizin inşaat sektöründeki ihtiyacını karşılamak üzere beton çeliği üretimi için 400.000 ton/yıl kapasite ile kurulan Kontinü Haddehane, 2005 yılında yapılan modernizasyon ile 675.000 ton/yıl üretim yapacak kapasiteye ulaşmıştır.

Üretim süreci,

- · Kütük İsitmə,
- Kutuk Isitma, Haddeleme, QTB (Tempcore), Soğutma İzgarası, Paketleme, İstifleme

adımlarından oluşur.

2005 yılından itibaren QTB (tempcore) hat-tının da devreye alınmasından sonra sismik kalite inşaat çeliğinin üretilebilirliği sağlan-mıştır. Kontinü Haddehanede çap 12-40 mm arasında;

- · TS 708 standardı;
- 8420C 8500C 8500B
- GOST R 52544-2006 standardı;

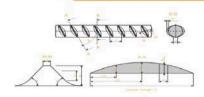
kalitelerinde üretim yapılmaktadır.

The Continuous Rolling Mill, which was established in 1965 with a capacity of 400,000 tons / year for concrete steel production to meet the needs of our country in the construction sector, has reached a capacity of 675,000 tons / year with the modernization made in 2005.

The production process consists of the following steps:

- Billet Heating,
- Billet Heating,
 Rolling,
 QTB (Tempcore),
 Cooling Grill,
 Packaging,
 Stowing

After the commissioning of the OTB (tempcore) line as of 2005, seismic quality construction steel production has been possible. In the Continuous Rolling Mill, production is made in the following qualities between 12-40 mm in diameter;


- TS 708 standard;

- · GOST R 52544-2006 standard;

36

Boyut Standardi Dimension Standart TS 708

Quality Standart TS 708

Nervür Ölçü ve Toleransları Rib Dimension and Tolerance

Rib Diameter (d)	Boyuna Nervür (Fitil) Yüksekliği Longitudinal Rib Height Mas	Letitudinal Rib Height	Enine Nervitr Araligi Latitudinal Rita Space (c)	Latitudinal Rib Inclination Space
8	1,20	0,24-1,10	3,2-9,6	35°-75°
10	1,50	0,30-1,50	4,0-12,0	35°-75°
12	1,80	0,36-1,80	4,8-14,4	35°-75°
14	2,10	0,42-2,10	5,6-16,8	35°-75°
16	2,40	0,48-2,40	6,4-19,2	35°-75°
18	2,70	0,54-2,70	7,2-21,6	35°-75°
20	3,00	0,60-3,00	8,0-24,0	35°-75°
22	3,30	0,66-3,30	8,8-26,4	35°-75°
25	3,75	0,75-3,75	10,0-30,0	35°-75°
26	3,90	0,78-3,90	10,4-31,2	350-750
28	4,20	0,84-4,20	11,2-33,6	350,750
30	4,50	0,90-4,50	12,0-36,0	35°-75°
32	4,80	0,96-4,80	12,8-38,4	35°-75°
34	5,10	1,02-5,10	13,6-40,8	35°-75°
36	5,40	1,08-5,40	14,4-43,2	350-750
38	5,70	1,14-5,70	15,2-45,6	35°-75°
40	6,00	1,20-6,00	16,8-48,0	350-750

Kütükler Billets

Boyut Standardı Dimension Standart TS 9914 TS 9016

Kalite Standardı

Quality Standart EN 10025 TS 708 Müşteri talebi ile diğer kaliteler Other qualities according to customer's request

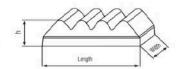
Anma Ölçüsü	Boyutlar Dimension	Anma Ölçüsü Toleransı	Kesit Alanı Section	Birim Kütle Unit Mass	Boy* Finished Length*	Tolerans Tolerance	Köşe Radyus Comer Radius
Nominal Size	a (mm)	t (mm)	S (cm²)	G (Kg/m)	(m)	t (mm)	R max.(mm)
100×100	100	25	98,76	77,53	6-12	100	12
120×120	120	25	142,76	112,07	6-12	100	12
130×130	130	3.0	167,76	132,76	6-12	100	12
150x150	150	3.0	223,06	180,00	6-12	100	15
170×170	170	3.0	287,05	224,05	6-12	100	15
200×200	200	30	398,05	310,05	6-12	100	15

Çelik Kaliteleri Steel Qualities

Çelik Kaliteleri Steel Qualities	Web Address	Karekod OR Code
Genel Yapı Çelikleri General Bullding Steels	https://www.kardemir.com/dosyalar/k/GYC.pdf	
Bağlantı Elemanı Çelikleri Connection Element Steels	https://www.kardemir.com/dosyalar/k/BECK.pdf	067.10
Karbon Çelikleri Carbon Steels	https://www.kardemir.com/dosyalar/k/KC.pdf	
Hasır ve Tel Çekmeye Uygun Düşük Karbonlu Çelikler Low Carbon Steels Suitable For Wire and Wire Drawing	https://www.kardemir.com/dosyalar/k/HTCDK.pdf	
Orta Karboniu Çelikler Medium Carbon Steels	https://www.kardemir.com/dosyalar/k/OKC.pdf	
Yüksek Karbonlu Çelikler High Carbon Steels	https://www.kardemir.com/dosyalar/k/YKC.pdf	
Kaynak Teli ve Elektrot Çelikleri Welding Wire and Electrode Steels	https://www.kardemir.com/dosyalar/k/KTEC.pdf	
Nervürlü İnşaat Çelikleri Ribbed Construction Steels	https://www.kardemir.com/dosyalar/k/NICK.pdf	
Ön Germeli Beton Çelikleri Pre-Stressed Concrete Wire (PC Wire)	https://www.kardemir.com/dosyalar/k/OGBC.pdf	
Demiryolu Rayı Çelikleri Railway Rail Steels	https://www.kardemir.com/dosyalar/k/RCK.pdf	
Tren Tekeri Çelikleri Train Wheel Steels	https://www.kardemir.com/dosyalar/k/TTUCK.pdf	
Özel Çelikler Special Steels	https://www.kardemir.com/dosyalar/k/OCK.pdf	

42

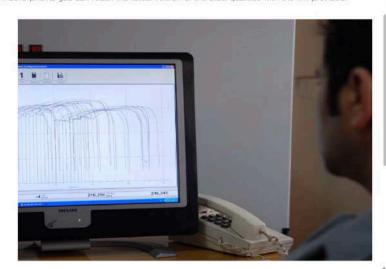
Kok Ürünleri Coke Products


	Ham Katron Crude for		
Analiz	Birim	Deger	Standart Standard
Model Auch	~	Max 0,05	ASTM D2415
Kultrürt:	786	Max: 0,4	ASTM DISS2
Su Water	76	Max 5	TS EN 1426
Yogunluk Deviciny (35 vc)	gr / cm²	Max. 1.25	TS EN ISO 3838
Tolueride Çazülmeyen Insolutile Tolume	. %	30	ASTM DATE
Maftalin Mashibashne	% Max.	Max. II	NET 66-029
Donme Noktes	'c	-2.+2	TS 1233 ISO 309
Alevienne Noktası	10	85 - 125	TS EN 150 2592
Filmir Flant Destilasyon		22.5740	1,15,571,000,000
Distribution - may ex-	760	0 - 2	
882 230 'C	76	2 - 4	
750 - 240 °C	96	B - 10	
240 200 rc	96.	8 - 10	TS 128
290 - 220 10	%	6 - 10	100-0010000
270 360 %	96	5 - 10	
Zift Finch			
SHE PHECH	Matrim Boyer Rot Florid	50 – 70 r	
Analiz	Katrim Boyas	Deger	Standart
Analie	Katron Boyes for Florid	r	Standard.
Analie Analie Ozgał Analie (25 °C) Specific Oscaria (25 °C)	Katran Boyas for Fland Birim	Deger	Standard.
Analie dreshor Ozgut Agerik (25 °C) Specific Costs) (25 °C)	Katran Boyan for Fland Brim 1877 g / cm²	Deger Vinto	TS EN ISO 3838
Analie di salvoi Ozqui Ageris (25 °C) Sciii Carrettine (25 °C) Sciii Carrettine (25 °C)	Katran Boyan for Fland Brim 1877 g / cm²	Deger Vinto	TS EN ISO 3838
Aradis Ozoul Agerisk (25 °C) Francisc Control (25 °C) Francisc Cont	Kelron Boyen für Florif Birim 1917 g / cm²	Deger Visite 1,05 Max. 0,5 Min. 30 Min. 40	TS EN ISO 3838
Analis disables Osquit Ageris (22 °C) control (25 °C) Control	Ketrim Boyes Tur Flami Brims 1977 g / om* %	Deger Vinite 1,05 Max. 0,5	TS EN ISO 3838 ASTM 02415
Analiz Analiz Analiz Analiz Analiz Dase (Analiz But Dambring (Sacreary) Esselverian (Sacreary) Esselverian (Sacreary) Esselverian (Sacreary) Esselverian (Sacreary) Analiz Analiz	Katran Boyan für fürni Birin g / onr % % Proc Naftalir	Declar	TS EN ISO 3838 ASTM 02415 TS 128 Standart
Analic Analic Analic Analic Analic Analic Analic Analic Bank Color Bank Color Analic Analic Analic Analic	Kelfrem Boyes The Florid Birm 1977 cm² 16. 16. 16. 16. Pros Nofitalir	Deger hinter 1,05 Max. Q.5 Min. 30 Min. 40 Parlak Gyah parlak Gyah	TS EN ISO 3638 ASTM 02415 TS 128
Analiz Analiz Osea (Analiz Analiz Osea (Analiz Analiz Darmina (Georger) Darmina (G	Katran Boyan für fürni Birin g / onr % % Proc Naftalir	Declar	TS EN ISO 3838 ASTM 02415 TS 128
Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis Analis	Materian Deposits für Floris Bir floris Strim St	Decigns Visit of 1,05 Max. 0,5 Min. 30 Min. 40 Min. 40 Portial Gyah, Grant Chart Decigns Visit of	TS EN ISO 3838 ASTM D2415 TS 128 TS 128 Standart Standart

Anatz	Birim	Deger	Standart Standard
Yoguntuli (25 90)	a / sm²	1.12	TS EN ISO 383
Viskozite (Yozme 40 °C)	Saniya Second	6 - 13	ASTM DID9
Su Inone	%	Max 2	TS EN 1428
Kalinti Yum Noktao	No.	20 - 50	TS EN 1427
Mesidae Softening Florid Destilasyon Distilasyon			
270 °C	96	Mes. 30	
37.701+38.70 °C	76	fotox 1%	TS: 120
Zift ///tim	14.	55	
Arvelia Arcalysis	Oscilla Little	Deger	Standart Standard
Yoğunluk (25 °C) Donelly (25 °C)	9 / cm²	7,14	TS EN ISO 383
Vickozito (Yüzme 32 °C)	Saniye	120 - 200	ASTM DU9
Sw Wester	%		TS EN 1428
Kalinti Yum Noktase Hespitus Saftening Point Bestillacyon Darifistrari	*с	35 - 55	TS EN 1427
270 %	16.	Man. 15	
270-300 FC	%	Max. 10	TS 120
Zift /firmartors	%	75	
Inceltifine Sureal 10 mm	Saniye	20 - 140	TS EN 12846
Analiz Analiz	Birim Court	Doger	Standart Standard
Yogunluk (38°°C) Demely (36°°C)	g / cm²	1,0 - 1,1	TS EN ISO 383
Su Woter	74.	Max. 3	15 EN 1428
Kuruma Nolictasi Depter Paint	(°C)	Min. 290	
Dectilacyon (AntWorkers			
+ 205 AC	76.	Max 15	15 128
= 200 %	96	Max. 75	12 44

Pikler Pig Irons

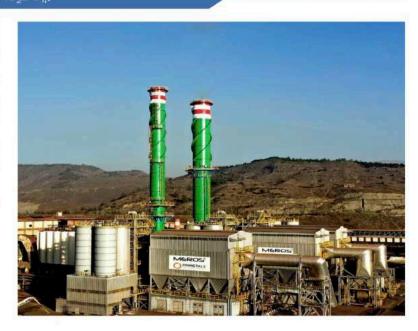
Cinsi Typo	Si	Mn	s	С	P
K SFERO-1	0.90 (Max)	0,25 (Max.)	0.015 (Max.)	3,5-4,5	0,060 (Max
K SFERO-2	0,90 (Max.)	0,25-0,40	0,015-0,020	3,5-4,5	0,060 (Max
K.SFERO-3	0,90 (Mex.)	0,40-0,60	0,020-0,025	3.5-4.5	0,060 (Max.
HI	2,01 (Min.)	0,6-1,2	0,060 (Max.)	3,5-4,5	0,200 (Max.
H2 ÖZEL H2 SPECIAL	1,70-2,00	0.6-1,2	0,060 (Max.)	3,5-4,5	0,200 (Max
H2	1/40-1,70	0.6-1,2	0,060 (Max.)	3,5=4,5	0,200 (Max
H2 YK H2 H5	1,40-1,70	0,6-1,2	0,060 (Min.)	3,5-4,5	0,200 (Max
Ç1	1,00-1,39	0.6-1,2	0,060 (Max.)	3,5-4,5	0,200 (Max
ÇI YK ÇI HS	1,00-1,39	0.6-1,2	0,060 (Min.)	3,5-4,5	0,200 (Max
Ç2	0.99 (Max.)	0.6-1,2	0,060 (Max.)	3,5-4,5	0,200 (Max.)
Ç2 YK Ç2 H5	0,99 (Max)	06-1,2	0,060 (Min.)	3.5-4.5	0,200 (Max.)


40

Çelik Kaliteleri Steel Qualities

Çelik kaliteleri tabloları düzenli olarak güncellenmektedir. Karekodu telefonunuz ile okutarak çelik kaliteleri tablolarının en güncel haline ulaşabilirsiniz. Eğer telefonunuzda karekod okuyucu yok ise bağlantı adresi üzerinden tablonun en güncel haline ulaşabilirsiniz.

The table of steel qualities is regularly updated. You can reach the latest version of the chemical analysis by scanning the barcode with your mabile phone. If you do not have a supported mobile phone, you can reach the latest version of the steel qualities with the link provided.

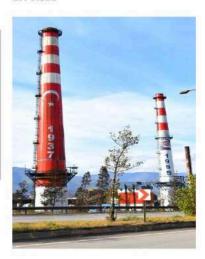


MEROS Atığı (Sodyum Sülfat Na₂SO₄) MEROS Waste (Sodium Sulfate Na₂SO₄)

7	echnical Specifica	tions
İçeriği Content	Tipik Değerler Typical Values	Yontem Method
Na _i SO ₄	%85,9	TS 4528.1985
Na ₃ CO ₃	%1,5	ISO 6353/2:1983
NaCl	%7,2	ISO 6353/2:1983
NaF	%1,0	lyon Kromatografi Ian Chromatography
pH değeri (%5'lik çözeltide) pH Value (%5 Solution)	8,00	ISO 6353/2:1983

46

Metalurjik Kireç Metallurgical Lime


Kimyasal Chemical	
İçeriği Content	Tipik Değerler (% Typical Values (%,
Aktif CaO Active CaO	90
Total CaO	93
Kızdırma Kaybı Loss of Glow	0,5
s	0,04

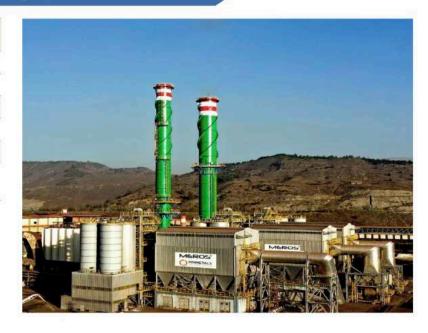
Kok Ürünleri Coke Products

ligili Standartlar Related Standarts DIN 59200

	Amonyum Ammanium 3				
Arializ deschare		Birire (350)	Degur Venus	Standart	
Rutubet Humidity		96	Max. 0,5	TS 2832	
Serbest Asitlik Free Acidity		%	Max. 0,03	TS 856	
Toplam Azot Total Nitrogen		%	Min. 20,5		
	3,36 mm (6 Mesh)	%	0		
Ebat Size	0,59 mm (30 Mesh)	76	Min. 55	TS 836	
	0,21 mm (70 Mesh)	96	Min. 90		
	Ham Bei Crude Bei				
Armila		Birten (300)	Deger	Standart Survivord	
Yogunluk (25 °C) Oensity (25 °C)		g / cm³	0,900	ASTM D405	
Kükürt Sulphur		%	Max. 0,5	ASTM DISS	
Damlema Noktası Dropping Point		··C	75		
Kuruma Noktası Drying Point		°C	Max. 240		
	> 100 °C	96	Min. 75	ASTM D850	
Damitma Distillation	> 120 °C	%	Min. 85		
	> 160 °C	76	Min. 93		
Görünüm Annananası			Berrak Cheor		

44

Granüle Yüksek Fırın Cürufu Granule Blast Furnace Slag


Teknik Özellikler Technical Specifications

lçeriği Content	Tipik Değerler % Typical Values
Rutubet Humidity	(Stokts / in Stock)
Rutubet Humidity	(Havuzda az dinlenmiş / Granulated with water sprey)
SiO ₂	35,0 - 45,0
CaO	30,0 - 40,0
Al ₂ O ₃	9,0 - 13,0
5	O,5 - 1,5
MgO	6,0 - 8,5
MnO	0,5 - 3,5
FeO	0,1 - 3,5
к,о	0,5 - 2,0
Na ₂ O	0,2 = 0,6
TiO ₂	0,3 - 0,7
Yigin Yogunlugu (gr / cm²) Bulk Danuity (gr / cm²)	1,24
3.15 mm Elek Östü 3.15 mm Chier Streem	6,89
1 mm Elek üstü 1 mm Over Sicreen	51,21
1 mm Elek altı 1 mm Linder Screen	41,90
Bazite Basicay	0,65 - 1,10

MEROS Atığı (Sodyum Sülfat Na₂SO₄) MEROS Waste (Sodium Sulfate Na₂SO₄)

7.	Teknik Özellikle echnical Specifica	
İçeriği Content	Tipik Değerler Typical Values	Yontem Method
Na _z SO ₄	%85,9	TS 4528.1985
Na ₃ CO ₃	%1,5	ISO 6353/2:1983
NaCl	%7,2	ISO 6353/2:1983
NaF	%1,0	lyon Kromatografi Ion Chromatography
pH değeri (%5'lik çözeltide) pH Value (%5 Solution)	8,00	ISO 6353/21983

46

Metalurjik Kireç Metallurgical Lime

Kimyasa Chemical	
İçeriği Content	Tipik Değerler (% Typical Values (%,
Aktif CaO Active CaO	90
Toplam CaO Total CaO	93
Kızdırma Kaybı Loss of Glow	0,5
s	0,04

TITAN SONDAJ

Nervürlü - Beton Donatı Çelikleri Rebar - Reinforcing Steels of Concrete

Mekanik Özellikler

Mechanical Specifications

Tip T _{IA} Se	Düz Yüzeyli Non-Ribbed			Nervorlo Ribbed		
Sand Class	\$220	\$420	84208	B420C	B500B	B5000
Akma Dayarımı Yield Strenght Re (N/mm²)(Min.)	220	420	420	420	500	500
Çekme Dayanımı Tensile Strenght Rm (N/mm²)(Mm)	340	500	- 41		*:	*
Rm / Re	min. 1,20	min. 1,15	min. 1,08	≥1,15 ≤1,35	min.1,08	≥1,15 ≤1,35
Deneysel Akma Dayanımı / Karakteristik Akma Dayanımı Oranı React./Renom. (Max)	ŭ.	1,30		1,30		1,30
Kopma Uzaması Elongotion (Μίπ) Α./%)	18	10	12	12	12	12
Maks, Vükte Toplam Uzama Max. Load Total Elongation (Aln.) Agt(%)			5	7,5	5	7,5

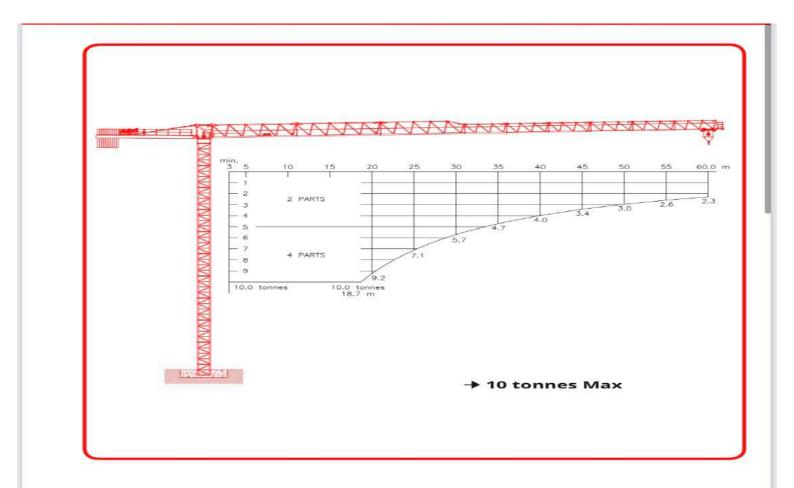
Ürün Sıcak Markalamamız

Product Hot Marking

- X: TSE 708-2016 Standardi Gereği TSE 708-2016 Standard Requirement
- 9 Ülke kodu (Türkiye) Country Code (Turkey)
- G G Uygunluk belgesi sonrasında kullanılan işaret G Comformity Certificate Sign
- 1 : Şirketimizin kodu (*) Our Company Code (*)

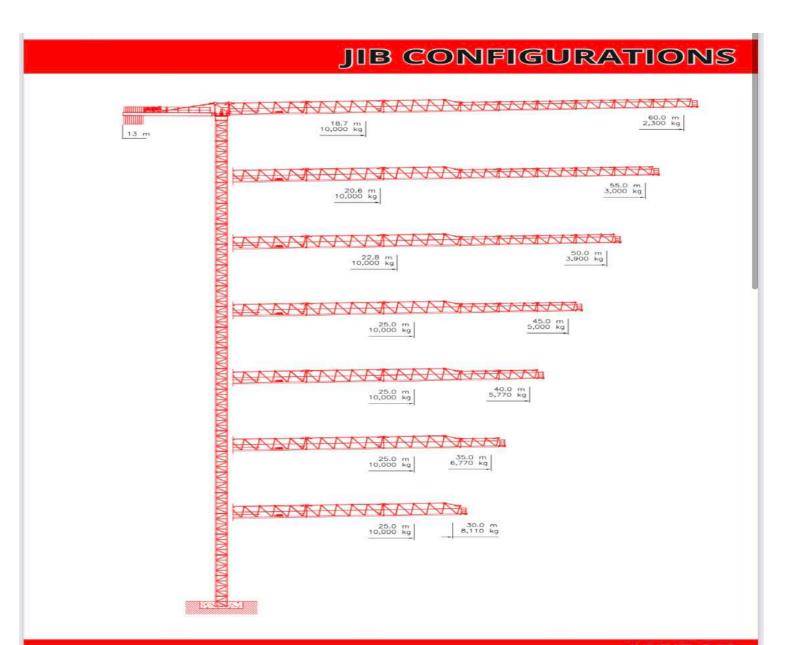
(*) Belgelendirme kuruluşunun şirketimize verdiği kod. Ülkemizde ilk G uygunluk alan şirket olduğumuzdan dolayı 1 numara verilmiştir.

It is the code given by the Certification Body to our company. Since we are the first company in our country that has the certificate of G confirmity, we are given the number 1.


\ \X\9\G\1\-\\

Anma Çapı ve Birim Kütle Toleransı Nominal Diameter and Weight Tolerance

Anma Çapı Nominal Diameter (d)	Anma Kütlesi Nominal Weight (g/m)	Kesit Alam Section Areo (mm/)
8	0,395	50,3
10	0,617	78,5
12	0,888	113,0
14	1.210	154,0
16	1580	201,0
18	2.000	254,4
20	2.470	314,0
22	2.985	380,0
25	3.850	491,0
26	4.168	531,0
28	4.830	616,0
30	5.550	706,5
32	6.310	804,0
34	7.124	907,5
36	7.986	1017,4
38	8.898	1133,5
40	9.860	1256,0



F.E.M 1.001-HC1/A3/E3

FLAT TOP TOWER CRANE

LOAD CHARTS

DOT DOG	Jib Length													
Radius	60.0 m		55.0 m		50.0 m		45.0 m		40.0 m		35.0 m		30.0 m	
	4 parts	2 parts	4 parts	2 parts	4 parts	2 parts	4 parts	2 parts	4 parts	2 parts	4 parts	2 parts	4 parts	2 parts
[m]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]
14.0	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
15.0	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
16.0	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
17.0	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
18.0	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
19.0	9,820	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
20.0	9,250	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
21.0	8,740	5,000	9,800	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
22.0	8,270	5,000	9,290	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
23.0	7,850	5,000	8,820	5,000	9,910	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
24.0	7,470	5,000	8,390	5,000	9,440	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
25.0	7,110	5,000	8,000	5,000	9,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000	10,000	5,000
26.0	6,790	5,000	7,640	5,000	8,600	5,000	9,560	5,000	9,560	5,000	9,570	5,000	9,570	5,000
27.0	6,490	5,000	7,310	5,000	8,230	5,000	9,150	5,000	9,160	5,000	9,160	5,000	9,160	5,000
28.0	6,210	5,000	7,000	5,000	7,890	5,000	8,780	5,000	8,780	5,000	8,780	5,000	8,780	5,000
29.0	5,950	5,000	6,710	5,000	7,580	5,000	8,430	5,000	8,430	5,000	8,440	5,000	8,440	5,000
30.0	5,710	5,000	6,450	5,000	7,280	5,000	8,100	5,000	8,100	5,000	8,110	5,000	8,110	5,000
31.0	5,490	5,000	6,200	5,000	7,000	5,000	7,800	5,000	7,800	5,000	7,810	5,000		
32.0	5,280	5,000	5,970	5,000	6,750	5,000	7,520	5,000	7,520	5,000	7,520	5,000		
33.0	5,080	5,000	5,750	5,000	6,500	5,000	7,250	5,000	7,250	5,000	7,260	5,000		
34.0	4,900	4,900	5,550	5,000	6,280	5,000	7,000	5,000	7,000	5,000	7,010	5,000		
35.0	4,730	4,730	5,350	5,000	6,060	5,000	6,760	5,000	6,770	5,000	6,770	5,000	1	
36.0	4,560	4,560	5,170	5,000	5,860	5,000	6,540	5,000	6,540	5,000		10-0-1	7-4	
37.0	4,410	4,410	5,000	5,000	5,670	5,000	6,330	5,000	6,330	5,000				
38.0	4,260	4,260	4,840	4,840	5,490	5,000	6,140	5,000	6,140	5,000				
39.0	4,120	4,120	4,680	4,680	5,320	5,000	5,950	5,000	5,950	5,000				
40.0	3,990	3,990	4,540	4,540	5,160	5,000	5,770	5,000	5,770	5,000				
41.0	3,870	3,870	4,400	4,400	5,000	5,000	5,600	5,000			70			
42.0	3,750	3,750	4,270	4,270	4,860	4,860	5,440	5,000						
43.0	3,640	3,640	4,140	4,140	4,720	4,720	5,290	5,000						
44.0	3,530	3,530	4,020	4,020	4,580	4,580	5,140	5,000						
45.0	3,430	3,430	3,910	3,910	4,460	4,460	5,000	5,000						
46.0	3,330	3,330	3,800	3,800	4,340	4,340								
47.0	3,230	3,230	3,700	3,700	4,220	4,220	1							
48.0	3,140	3,140	3,600	3,600	4,110	4,110								
49.0	3,060	3,060	3,500	3,500	4,000	4,000								
50.0	2,970	2,970	3,410	3,410	3,900	3,900								
51.0	2,890	2,890	3,320	3,320										
52.0	2,820	2,820	3,240	3,240										
53.0	2,740	2,740	3,150	3,150										
54.0	2,670	2,670	3,080	3,080										
55.0	2,610	2,610	3,000	3,000										
56.0	2,540	2,540												
57.0	2,480	2,480												
58.0	2,420	2,420												
59.0	2,360	2,360												
60.0	2,300	2,300												

DRIVES

	2-PA	RTS	4	LΡA	RTS			
MOTOR 37 kW	4		4					
6	Load	Max. Speed	Load		Max. Speed			
	0 - 1.0 t 1.0 - 2.0 t 2.0 - 5.0 t 100 m/min 76 m/min 38 m/min		0 - 2.0 2.0 - 4.0 4.0 - 10.0	0 t 38 m/min				
	ноіѕт			Н	HOIST WIRE			
-			30 TO	8	Diameter	15 mm		
	CAPA	365		Safety Factor	5			
	350 m /	4 layers			MBL	173 kN		
	TROLLEY WINCH					TROLLEY DRUI	v	
		MOTOR				CAPACITY		
		4 kW				60 m / 1 Layer		
TR	OLLEY SPEE	DS			TROL	LEY WIRE		
-				Diameter		10 mm		
24	0 - 10 t 0 - 70		m/min	Safety Factor		5		
					L	87 kN		
	SLEW DRIVE				Δ	POWER		
*		Motor			4	SUPPLY		
	l	2 x 7 kW				400 - 480 V, 50/60 Hz		
	SLEW SPEED	s			nsumption	50 kVA		
				Main Fuse		80 A		
45	0 - 10 t	0 - 0.7	0 - 0.7 rpm		commended nererator Size	125 kVA		
, in	UND	ERCARRIAG	E					
(A)	Motor 2 × 5.5kW					SUPPLY CABLE		
TRAVEL SPEEDS					able Length	Cable Type		
6— Turning Commission				0 - 175 m		4 x 16 mm²		
1	0 - 10 t	0 - 20	m/min		175 - 250 m	4 x 25 mm²		
All motion controls are and jerk-free operation creeping speed down t	Fa.	• 0. 0.0.000	smooth	th re	ne standard versi equirements regal	own in the tables are on of K230F. For spec rding load charts or dr act Krøll Cranes A/S.	cial	

TITAN SONDAJ

Our Israeli Representatives is : Silver y.m LTD P.O.BOX 469 LOD 7110401 ISRAEL

Attn. Mrs.
MOSHIKO/ SHUKI MAIMON
TEL 00972507271108
00972502271108

E mail:silver-y@012.net.il

Fax 089209642